Modern machine-learning applications in ambient ionization mass spectrometry

被引:2
作者
Sorokin, Anatoly A. [1 ]
Pekov, Stanislav I. [2 ,3 ,4 ]
Zavorotnyuk, Denis S. [1 ]
Shamraeva, Mariya M. [1 ]
Bormotov, Denis S. [1 ]
Popov, Igor A. [1 ,3 ,5 ]
机构
[1] Moscow Inst Phys & Technol, Lab Mol Med Diag, Dolgoprudnyi, Russia
[2] Skolkovo Inst Sci & Technol, Mass Spectrometry Lab, Moscow, Russia
[3] Siberian State Med Univ, Translat Med Lab, Tomsk, Russia
[4] Moscow Inst Phys & Technol, Dept Mol & Biol Phys, Dolgoprudnyi, Russia
[5] Moscow Inst Phys & Technol, Lab Mol Med Diag, Dolgoprudnyi 141701, Russia
关键词
ambient ionisation; data analysis; deep learning; machine learning; mass spectrometry imaging; PAPER SPRAY; IN-VIVO; CANCER; QUANTIFICATION; NORMALIZATION; RESOLUTION; VERSATILE; CHEMISTRY; GEOMETRY; MIXTURES;
D O I
10.1002/mas.21886
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
This article provides a comprehensive overview of the applications of methods of machine learning (ML) and artificial intelligence (AI) in ambient ionization mass spectrometry (AIMS). AIMS has emerged as a powerful analytical tool in recent years, allowing for rapid and sensitive analysis of various samples without the need for extensive sample preparation. The integration of ML/AI algorithms with AIMS has further expanded its capabilities, enabling enhanced data analysis. This review discusses ML/AI algorithms applicable to the AIMS data and highlights the key advancements and potential benefits of utilizing ML/AI in the field of mass spectrometry, with a focus on the AIMS community.
引用
收藏
页码:74 / 88
页数:15
相关论文
共 50 条
  • [1] Applications of ambient ionization mass spectrometry in 2022: An annual review
    Rankin-Turner, Stephanie
    Sears, Patrick
    Heaney, Liam M.
    ANALYTICAL SCIENCE ADVANCES, 2023, 4 (5-6): : 133 - 153
  • [2] Ambient Ionization Mass Spectrometry: Recent Developments and Applications
    Feider, Clara L.
    Krieger, Anna
    DeHoog, Rachel J.
    Eberlin, Livia S.
    ANALYTICAL CHEMISTRY, 2019, 91 (07) : 4266 - 4290
  • [3] Ambient ionization mass spectrometry
    Lebedev, A. T.
    RUSSIAN CHEMICAL REVIEWS, 2015, 84 (07) : 665 - 692
  • [4] Rapid metabolic profiling and authentication of Cordyceps using ambient ionization mass spectrometry and machine learning
    Ma, Wenbo
    Song, Mengyang
    Ji, Zhenyang
    Liu, Yiping
    Na, Pengjun
    Li, Yuze
    Nie, Zongxiu
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2025, 417 (09) : 1935 - 1945
  • [5] Ambient Ionization Mass Spectrometry: Applications and New Trends for Environmental Matrices Analysis
    Chaves, Andrea Rodrigues
    Martins, Rafael Oliveira
    Maciel, Lanaia Itala Louzeiro
    Silva, Allyster Rodrigues
    Gondim, Daniel Vieira
    Fortalo, Julia Martins
    Santos, Steffany de Souza
    Roque, Jussara Valente
    Vaz, Boniek Gontijo
    BRAZILIAN JOURNAL OF ANALYTICAL CHEMISTRY, 2022, 9 (36): : 52 - 77
  • [6] Applications of ambient ionization mass spectrometry in 2021: An annual review
    Rankin-Turner, Stephanie
    Reynolds, James C.
    Turner, Matthew A.
    Heaney, Liam M.
    ANALYTICAL SCIENCE ADVANCES, 2022, 3 (3-4): : 67 - 89
  • [7] Ambient ionization mass spectrometry for food analysis: Recent progress and applications
    Lv, Yueguang
    Zhao, Jiayu
    Xue, Hongyu
    Ma, Qiang
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2024, 178
  • [8] Nanotip Ambient Ionization Mass Spectrometry
    Zhou, Zhenpeng
    Lee, Jae Kyoo
    Kim, Samuel C.
    Zare, Richard N.
    ANALYTICAL CHEMISTRY, 2016, 88 (10) : 5542 - 5548
  • [9] Optimal Mass Transport Signal processing and machine-learning applications
    Kolouri, Soheil
    Park, Se Rim
    Thorpe, Matthew
    Slepcev, Dejan
    Rohde, Gustavo K.
    IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) : 43 - 59
  • [10] Machine learning approach in canine mammary tumour classification using rapid evaporative ionization mass spectrometry
    Abbate, Jessica Maria
    Mangraviti, Domenica
    Brunetti, Barbara
    Cafarella, Cinzia
    Rigano, Francesca
    Iaria, Carmelo
    Marino, Fabio
    Mondello, Luigi
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2025, 417 (02) : 373 - 388