Assessing the efficacy of 3D Dual-CycleGAN model for multi-contrast MRI synthesis

被引:12
作者
Mahboubisarighieh, Ali [1 ]
Shahverdi, Hossein [2 ]
Nesheli, Shabnam Jafarpoor [3 ]
Kermani, Mohammad Alipoor [4 ]
Niknam, Milad [5 ]
Torkashvand, Mohanna [6 ]
Rezaeijo, Seyed Masoud [7 ]
机构
[1] Univ Kharazmi, Dept Comp Engn, Tehran, Iran
[2] Shahid Beheshti Univ, Dept Elect Engn, Tehran, Iran
[3] Univ Sci & Culture, Fac Engn, Tehran, Iran
[4] Univ Shahid Bahonar, Dept Comp Engn, Kerman, Iran
[5] Islamic Azad Univ, Dept Comp Engn, Nurabad Mamasani, Iran
[6] Hamedan Univ Technol, Dept Comp Engn, Hamadan, Iran
[7] Ahvaz Jundishapur Univ Med Sci, Fac Med, Dept Med Phys, Ahvaz, Iran
关键词
Generating; MRI; 3D multi-contrast MRI; 3D Dual-CycleGAN; ADVERSARIAL NETWORK;
D O I
10.1186/s43055-024-01287-y
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background This research presents a novel methodology for synthesizing 3D multi-contrast MRI images utilizing the 3D Dual-CycleGAN architecture. The performance of the model is evaluated on different MRI sequences, including T1-weighted (T1W), T1-weighted contrast-enhanced (T1c), T2-weighted (T2W), and FLAIR sequences.Results Our approach demonstrates proficient learning capabilities in transforming T1W images into target modalities. The proposed framework encompasses a combination of different loss functions including voxel-wise, gradient difference, perceptual, and structural similarity losses. These loss components, along with adversarial and dual cycle-consistency losses, contribute significantly to realistic and accurate syntheses. Evaluation metrics including MAE, PMAE, RMSE, PCC, PSNR, and SSIM are employed to assess the fidelity of synthesized images compared to their ground truth counterparts. Empirical results indicate the effectiveness of the 3D Dual-CycleGAN model in generating T1c images from T1W inputs with minimal average discrepancies (MAE of 2.8 +/- 2.61) and strong similarity (SSIM of 0.82 +/- 0.28). Furthermore, the synthesis of T2W and FLAIR images yields promising outcomes, demonstrating acceptable average discrepancies (MAE of 3.87 +/- 3.32 for T2W and 3.82 +/- 3.32 for FLAIR) and reasonable similarities (SSIM of 0.82 +/- 0.28 for T2W and 0.80 +/- 0.29 for FLAIR) relative to the original images.Conclusions These findings underscore the efficacy of the 3D Dual-CycleGAN model in generating high-fidelity images, with significant implications for diverse applications in the field of medical imaging.
引用
收藏
页数:12
相关论文
共 37 条
  • [1] Liver, kidney and spleen segmentation from CT scans and MRI with deep learning: A survey
    Altini, Nicola
    Prencipe, Berardino
    Cascarano, Giacomo Donato
    Brunetti, Antonio
    Brunetti, Gioacchino
    Triggiani, Vito
    Carnimeo, Leonarda
    Marino, Francescomaria
    Guerriero, Andrea
    Villani, Laura
    Scardapane, Arnaldo
    Bevilacqua, Vitoantonio
    [J]. NEUROCOMPUTING, 2022, 490 : 30 - 53
  • [2] Bakas S., 2017, CANC IMAGING ARCH, V286, DOI DOI 10.7937/K9/TCIA.2017.KLXWJJ1Q
  • [3] Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features
    Bakas, Spyridon
    Akbari, Hamed
    Sotiras, Aristeidis
    Bilello, Michel
    Rozycki, Martin
    Kirby, Justin S.
    Freymann, John B.
    Farahani, Keyvan
    Davatzikos, Christos
    [J]. SCIENTIFIC DATA, 2017, 4
  • [4] Chartsias Agisilaos, 2017, Simulation and Synthesis in Medical Imaging. Second International Workshop, SASHIMI 2017. Held in Conjunction with MICCAI 2017. Proceedings: LNCS 10557, P3, DOI 10.1007/978-3-319-68127-6_1
  • [5] Artificial Intelligence in magnetic Resonance guided Radiotherapy: Medical and physical considerations on state of art and future perspectives
    Cusumano, Davide
    Boldrini, Luca
    Dhont, Jennifer
    Fiorino, Claudio
    Green, Olga
    Gungor, Gorkem
    Jornet, Nuria
    Klueter, Sebastian
    Landry, Guillaume
    Mattiucci, Gian Carlo
    Placidi, Lorenzo
    Reynaert, Nick
    Ruggieri, Ruggero
    Tanadini-Lang, Stephanie
    Thorwarth, Daniela
    Yadav, Poonam
    Yang, Yingli
    Valentini, Vincenzo
    Verellen, Dirk
    Indovina, Luca
    [J]. PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 85 : 175 - 191
  • [6] Asymmetric CycleGAN for image-to-image translations with uneven complexities
    Dou, Hao
    Chen, Chen
    Hu, Xiyuan
    Jia, Libang
    Peng, Silong
    [J]. NEUROCOMPUTING, 2020, 415 : 114 - 122
  • [7] ECHO-PLANAR MR-IMAGING
    EDELMAN, RR
    WIELOPOLSKI, P
    SCHMITT, F
    [J]. RADIOLOGY, 1994, 192 (03) : 600 - 612
  • [8] Effects of acquisition time and reconstruction algorithm on image quality, quantitative parameters, and clinical interpretation of myocardial perfusion imaging
    Enevoldsen, Lotte H.
    Menashi, Changez A. K.
    Andersen, Ulrik B.
    Jensen, Lars T.
    Henriksen, Otto M.
    [J]. JOURNAL OF NUCLEAR CARDIOLOGY, 2013, 20 (06) : 1086 - 1092
  • [9] Fatan M, 2021, 3D HEAD NECK TUMOR S, P211
  • [10] Deep learning-based multi-modal computing with feature disentanglement for MRI image synthesis
    Fei, Yuchen
    Zhan, Bo
    Hong, Mei
    Wu, Xi
    Zhou, Jiliu
    Wang, Yan
    [J]. MEDICAL PHYSICS, 2021, 48 (07) : 3778 - 3789