Higher order Turán inequalities for the distinct partition function

被引:1
作者
Dong, Janet J. W. [1 ]
Ji, Kathy Q. [1 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
基金
美国国家科学基金会;
关键词
Log-concavity; The third-order Tur & aacute; n inequalities; Partitions into distinct parts; The first modified Bessel function of; the first kind; JENSEN POLYNOMIALS; LOG-CONCAVITY; NUMBER; TURAN;
D O I
10.1016/j.jnt.2024.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the number q(n) of partitions of n with distinct parts is log -concave for n >= 33 and satisfies the third -order Tur & aacute;n inequalities for n >= 121 conjectured by Craig and Pun. In doing so, we establish explicit error terms for q(n) and for q(n - 1)q(n +1)/q(n)(2) based on Chern's asymptotic formulas for eta-quotients.
引用
收藏
页码:71 / 102
页数:32
相关论文
共 30 条
  • [1] Abramowitz M., 1972, Handbook of mathematical functions with formulas, graphs, and mathematical tables, V9th ed
  • [2] Andrews GE., 1998, Encyclopedia of Mathematics and its Applications
  • [3] The number of smallest parts in the partitions of n
    Andrews, George E.
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 624 : 133 - 142
  • [4] Banerjee K., Invariants of the quartic binary form and proofs of Chen's conjectures on inequalities for the partition function and the Andrews' spt function
  • [5] Bringmann K., 2021, Trans. Amer. Math. Soc. Ser. B, V8, P615
  • [6] HIGHER ORDER TURAN INEQUALITIES FOR THE PARTITION FUNCTION
    Chen, William Y. C.
    Jia, Dennis X. Q.
    Wang, Larry X. W.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (03) : 2143 - 2165
  • [7] Chen WYC, 2017, LOND MATH S, V440, P141
  • [8] Asymptotics for the Fourier coefficients of eta-quotients
    Chern, Shane
    [J]. JOURNAL OF NUMBER THEORY, 2019, 199 : 168 - 191
  • [9] A note on the higher order Turan inequalities for k-regular partitions
    Craig, William
    Pun, Anna
    [J]. RESEARCH IN NUMBER THEORY, 2021, 7 (01)
  • [10] JENSEN POLYNOMIALS AND THE TURAN AND LAGUERRE INEQUALITIES
    CRAVEN, T
    CSORDAS, G
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1989, 136 (02) : 241 - 260