Purely periodic continued fractions and graph-directed iterated function systems

被引:0
作者
Panti, Giovanni [1 ]
机构
[1] Univ Udine, Dept Math Comp Sci & Phys, Via Sci 206, I-33100 Udine, Italy
关键词
Dual maps; Extended modular group; Attractors of iterated function systems; SEPARATION PROPERTIES; HAUSDORFF DIMENSION; ENTROPY; SPECTRUM;
D O I
10.1007/s11139-024-00904-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe Gauss-type maps as geometric realizations of certain codes in the monoid of nonnegative matrices in the extended modular group. Each such code, together with an appropriate choice of unimodular intervals in P1R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{P}\,}}<^>1\mathbb {R}$$\end{document}, determines a dual pair of graph-directed iterated function systems, whose attractors contain intervals and constitute the domains of a dual pair of Gauss-type maps. Our framework covers many continued fraction algorithms (such as Farey fractions, Ceiling, Even and Odd, Nearest Integer, & mldr;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ldots $$\end{document}) and provides explicit dual algorithms and characterizations of those quadratic irrationals having a purely periodic expansion.
引用
收藏
页码:447 / 475
页数:29
相关论文
共 39 条
[21]  
Kraaikamp C, 1996, GEOMETRIAE DEDICATA, V59, P293
[22]   Natural extensions and entropy of α-continued fractions [J].
Kraaikamp, Cor ;
Schmidt, Thomas A. ;
Steiner, Wolfgang .
NONLINEARITY, 2012, 25 (08) :2207-2243
[23]  
Lothaire M., 2002, ALGEBRAIC COMBINATOR, V90, pxiv+504, DOI [DOI 10.1017/CBO9781107326019, DOI 10.1017/CBO9781107326019.008]
[24]   HAUSDORFF DIMENSION IN GRAPH DIRECTED CONSTRUCTIONS [J].
MAULDIN, RD ;
WILLIAMS, SC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 309 (02) :811-829
[25]  
NAKADA H, 1981, TOKYO J MATH, V4, P399
[26]   The non-monotonicity of the entropy of α-continued fraction transformations [J].
Nakada, Hitoshi ;
Natsui, Rie .
NONLINEARITY, 2008, 21 (06) :1207-1225
[27]   Attractors of dual continued fractions [J].
Panti, Giovanni .
JOURNAL OF NUMBER THEORY, 2022, 240 :50-73
[28]   Slow continued fractions, transducers, and the Serret theorem [J].
Panti, Giovanni .
JOURNAL OF NUMBER THEORY, 2018, 185 :121-143
[29]   A General Lagrange Theorem [J].
Panti, Giovanni .
AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (01) :70-74
[30]   THE SINGULARITY SPECTRUM F(ALPHA) FOR COOKIE-CUTTERS [J].
RAND, DA .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :527-541