Purely periodic continued fractions and graph-directed iterated function systems

被引:0
作者
Panti, Giovanni [1 ]
机构
[1] Univ Udine, Dept Math Comp Sci & Phys, Via Sci 206, I-33100 Udine, Italy
关键词
Dual maps; Extended modular group; Attractors of iterated function systems; SEPARATION PROPERTIES; HAUSDORFF DIMENSION; ENTROPY; SPECTRUM;
D O I
10.1007/s11139-024-00904-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe Gauss-type maps as geometric realizations of certain codes in the monoid of nonnegative matrices in the extended modular group. Each such code, together with an appropriate choice of unimodular intervals in P1R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{P}\,}}<^>1\mathbb {R}$$\end{document}, determines a dual pair of graph-directed iterated function systems, whose attractors contain intervals and constitute the domains of a dual pair of Gauss-type maps. Our framework covers many continued fraction algorithms (such as Farey fractions, Ceiling, Even and Odd, Nearest Integer, & mldr;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ldots $$\end{document}) and provides explicit dual algorithms and characterizations of those quadratic irrationals having a purely periodic expansion.
引用
收藏
页码:447 / 475
页数:29
相关论文
共 39 条
  • [1] [Anonymous], 1828, ANN MAT PUR APPL, V19, P294
  • [2] BEDFORD T., 1991, FRACTAL GEOMETRY ANA, V346, P1, DOI [10.1098/rspa.1975.0163, DOI 10.1098/RSPA.1975.0163]
  • [3] Berstel J., 2010, Codes and Automata
  • [4] Distribution of periodic points of certain Gauss shifts with infinite invariant measure
    Boca, Florin P.
    Siskaki, Maria
    [J]. NONLINEARITY, 2021, 34 (07) : 4570 - 4603
  • [5] Coding of geodesics on some modular surfaces and applications to odd and even continued fractions
    Boca, Florin P.
    Merriman, Claire
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2018, 29 (05): : 1214 - 1234
  • [6] Tuning and plateaux for the entropy of α-continued fractions
    Carminati, Carlo
    Tiozzo, Giulio
    [J]. NONLINEARITY, 2013, 26 (04) : 1049 - 1070
  • [7] The entropy of α-continued fractions: numerical results
    Carminati, Carlo
    Marmi, Stefano
    Profeti, Alessandro
    Tiozzo, Giulio
    [J]. NONLINEARITY, 2010, 23 (10) : 2429 - 2456
  • [8] Arithmetic and ergodic properties of 'flipped' continued fraction algorithms
    Dajani, K.
    Hensley, D.
    Kraaikamp, C.
    Masarotto, V.
    [J]. ACTA ARITHMETICA, 2012, 153 (01) : 51 - 79
  • [9] Separation properties for graph-directed self-similar fractals
    Das, M
    Edgar, GA
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2005, 152 (1-2) : 138 - 156
  • [10] de la Harpe P., 2000, TOPICS GEOMETRIC GRO