Design and analysis of an elliptical-shaped ring resonator for photonic crystal temperature sensing

被引:0
作者
Boukebeche, Younes [1 ]
Benmerkhi, Ahlem [1 ]
Ammari, Merzoug [1 ]
Bouchemat, Mohamed [1 ]
机构
[1] Univ Frere Mentouri Constantine 1, Fac Sci Technol, Dept Elect, Lab LMI, Constantine 25000, Algeria
关键词
Photonic crystals (PhC); Photonic band gap (PBG); Sensors; Sensitivity; Finite difference time domain (FDTD); PRESSURE; SIMULATION; GAP;
D O I
10.1007/s11082-024-07115-x
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the design and analysis of a temperature sensor that utilizes an optical filter consisting of an elliptical-shaped photonic crystal ring resonator (E-PhCRR) in a two-dimensional configuration. The basic structure comprises silicon (Si) rods immersed in the air (disconnected structure) arranged in a triangular lattice. The newly designed structure's photonic band gap (PBG) was calculated using the plane wave expansion (PWE) method, and the temperature sensor was modeled and studied using the finite difference time domain (FDTD). The temperature change causes a redshift in the resonance wavelength due to the subsequent change in refractive index. The temperature was systematically adjusted within the range of 0 degrees C to 50 degrees C, leading to a discernible change in the resonant wavelength by 5.2 nm, shifting it from 1682.59 nm to 1687.79 nm. The elliptical shape of the photonic crystal ring resonator provided us with significant flexibility to attain improved outcomes. Specifically, we achieved a quality factor of 316200, a temperature sensitivity of 103.92 pm/degrees C, and a refractive index sensitivity of 443 nm/RIU. Furthermore, we were able to acquire a detection limit of 5.12x10-9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.12 \times 10<^>{-9}$$\end{document} RIU while maintaining a compact size of 116.5 mu m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$116.5 \upmu {\text{m}}<^>{2}$$\end{document}.
引用
收藏
页数:18
相关论文
共 54 条
  • [1] Optical photonic crystal sensor based on U-shaped ring resonator
    Alioueche, A.
    Benmerkhi, A.
    Bouchemat, M.
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (12)
  • [2] Four channel optical demultiplexer based on L2 photonic crystal microcavity
    Ammari, Merzoug
    Benmerkhi, Ahlem
    Bouchemat, Mohamed
    [J]. OPTICA APPLICATA, 2022, 52 (04) : 613 - 625
  • [3] A highly sensitive optofluidic-gas sensor using two dimensional photonic crystals
    Anamoradi, Aysan
    Fasihi, Kiazand
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2019, 125 : 302 - 309
  • [4] Arunkumar R., 2017, Int. J. Photon. Opt. Technol, V3, P30
  • [5] Numerical analysis of all optical 1-bit comparator based on PhC structure for optical integrated circuits
    Askarian, Asghar
    Parandin, Fariborz
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (05)
  • [6] Optical and confinement properties of two-dimensional photonic crystals
    Benisty, H
    Weisbuch, C
    Labilloy, D
    Rattier, M
    Smith, CJM
    Krauss, TF
    De la Rue, RM
    Houdré, R
    Oesterle, U
    Jouanin, C
    Cassagne, D
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 1999, 17 (11) : 2063 - 2077
  • [7] Analysis of a photonic crystal temperature sensor based on Z-shaped ring resonator
    Benmerkhi, Ahlem
    Bounouioua, Amel
    Bouchemat, Mohamed
    Bouchemat, Touraya
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (01)
  • [8] Demonstration of temperature resilient properties of 2D silicon carbide photonic crystal structures and cavity modes
    Boruah, Jiten
    Kalra, Yogita
    Sinha, R. K.
    [J]. OPTIK, 2014, 125 (05): : 1663 - 1666
  • [9] High Sensitivity Temperature Sensor Based on Photonic Crystal Resonant Cavity
    Bounaas, Faiza
    Labbani, Amel
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2020, 90 : 85 - 90
  • [10] Recent advances in photonic crystal optical devices: A review
    Butt, M. A.
    Khonina, S. N.
    Kazanskiy, N. L.
    [J]. OPTICS AND LASER TECHNOLOGY, 2021, 142