Pion condensation in QCD at finite isospin density, the dilute Bose gas, and speedy Goldstone bosons

被引:4
作者
Andersen, Jens O. [1 ,2 ]
Yu, Qing [3 ]
Zhou, Hua [4 ]
机构
[1] Norwegian Univ Sci & Technol, Fac Nat Sci, Dept Phys, NTNU, Hogskoleringen 5, N-7491 Trondheim, Norway
[2] Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
[3] Southwest Univ Sci & Technol, Sch Math & Phys, Mianyang 621010, Peoples R China
[4] Chongqing Univ, Dept Phys, Chongqing 401331, Peoples R China
关键词
CHIRAL PERTURBATION-THEORY; GROUND-STATE ENERGY; SYSTEM; QUARK;
D O I
10.1103/PhysRevD.109.034022
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider pion condensation in QCD at finite isospin density mu I and zero temperature using two-flavor chiral perturbation theory (chi PT). The pressure is calculated to next-to-leading order (NLO) in the low-energy expansion. In the nonrelativistic limit, we recover the classic result by Lee, Huang, and Yang for the energy density of a dilute Bose gas with an s-wave scattering length that includes loop corrections from chi PT. In the chiral limit, higher-order calculations are tractable. We calculate the pressure to next-to-next-to-leading order (NNLO) in the low-energy expansion, which is an expansion in powers of mu 2I=(4 pi)2f2, where f is the (bare) pion decay constant. The spontaneous breakdown of the global internal symmetry U(1)I3 gives rise to a massless Goldstone boson or phonon. We discuss the properties of the low-energy effective theory describing this mode. Finally, we compare our results for the pressure and the speed of sound with recent lattice simulations with 2 + 1 flavors. The agreement is very good for isospin chemical potentials up to 180-200 MeV, depending on the physical quantity.
引用
收藏
页数:13
相关论文
共 50 条
[1]   Quark, pion and axial condensates in three-flavor finite isospin chiral perturbation theory [J].
Adhikari, Prabal ;
Andersen, Jens O. ;
Mojahed, Martin A. .
EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (05)
[2]   Quark and pion condensates at finite isospin density in chiral perturbation theory [J].
Adhikari, Prabal ;
Andersen, Jens O. .
EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (11)
[3]  
Andersen JO, 2023, Arxiv, DOI arXiv:2312.13092
[4]  
BELIAEV ST, 1958, SOV PHYS JETP-USSR, V7, P289
[5]   Renormalization of chiral perturbation theory to order p6 [J].
Bijnens, J ;
Colangelo, G ;
Ecker, G .
ANNALS OF PHYSICS, 2000, 280 (01) :100-139
[6]  
Bijnens J, 1999, J HIGH ENERGY PHYS
[7]  
Bogolyubov N.N., 1947, J PHYS URSS, V11, P23
[8]   Nonuniversal effects in the homogeneous Bose gas [J].
Braaten, E ;
Hammer, HW ;
Hermans, S .
PHYSICAL REVIEW A, 2001, 63 (06) :12
[9]   Quantum corrections to the energy density of a homogeneous Bose gas [J].
Braaten, E ;
Nieto, A .
EUROPEAN PHYSICAL JOURNAL B, 1999, 11 (01) :143-159
[10]   Equation of state and speed of sound of isospin-asymmetric QCD on the lattice [J].
Brandt, B. B. ;
Cuteri, F. ;
Endrodi, G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (07)