Decay and Global Well-Posedness of the Free-Boundary Incompressible Euler Equations with Damping

被引:0
作者
Lian, Jiali [1 ]
机构
[1] Jimei Univ, Sch Sci, Xiamen 361021, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Incompressible Euler equations; Damping; Free boundary problems; Global well-posedness; Decay; WATER-WAVE PROBLEM; FREE-SURFACE; SOBOLEV SPACES; REGULARITY; EXISTENCE; MOTION; SYSTEM;
D O I
10.1007/s12220-024-01694-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the free boundary problem for a layer of incompressible fluid lying below the atmosphere and above a rigid bottom in the horizontally infinite setting. The fluid dynamics is governed by the incompressible Euler equations with damping and gravity, and the effect of surface tension is neglected on the upper free boundary. We prove the global well-posedness of the problem with the small initial data in both 2D and 3D. One of key ideas here is to make use of the time-weighted dissipation estimates to close the nonlinear energy estimates; in particular, this implies that the Lipschitz norm of the velocity is integrable-in-time, which is significantly different from that of viscous surface waves (Guo and Tice in Anal PDE 6(6):1429-1533, 2013; Wang in Adv Math 374:107330, 2020).
引用
收藏
页数:28
相关论文
共 29 条
[1]  
Alazard T, 2015, ANN SCI ECOLE NORM S, V48, P1149
[2]  
Alinhac S., 1989, COMMUN PDE, V14, P173, DOI DOI 10.1080/03605308908820595
[3]  
BEALE JT, 1984, ARCH RATION MECH AN, V84, P307
[4]  
Christodoulou D, 2000, COMMUN PUR APPL MATH, V53, P1536, DOI 10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.3.CO
[5]  
2-H
[6]   Well-posedness of the free-surface incompressible Euler equations with or without surface tension [J].
Coutand, Daniel ;
Shkoller, Steve .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (03) :829-930
[7]  
Dafermos C.M., 2016, HYPERBOLIC CONSERVAT, DOI [10.1007/978-3-662-49451-6, DOI 10.1007/978-3-662-49451-6]
[8]   Global solutions of the gravity-capillary water-wave system in three dimensions [J].
Deng, Yu ;
Ionescu, Alexandru D. ;
Pausader, Benoit ;
Pusateri, Fabio .
ACTA MATHEMATICA, 2018, 219 (02) :213-402
[9]  
Dymnikov V.P., 1997, Mathematics of Climate Modelling
[10]   Global solutions for the gravity water waves equation in dimension 3 [J].
Germain, P. ;
Masmoudi, N. ;
Shatah, J. .
ANNALS OF MATHEMATICS, 2012, 175 (02) :691-754