UNET NEURAL NETWORK IN AGRICULTURAL LAND COVER CLASSIFICATION USING SENTINEL-2

被引:6
作者
Kramarczyk, P. [1 ]
Hejmanowska, B. [1 ]
机构
[1] AGH Univ Sci & Technol, Krakow, Poland
来源
2ND GEOBENCH WORKSHOP ON EVALUATION AND BENCHMARKING OF SENSORS, SYSTEMS AND GEOSPATIAL DATA IN PHOTOGRAMMETRY AND REMOTE SENSING, VOL. 48-1 | 2023年
关键词
UNet; Sentinel-2; landuse land cover; agriculture; BENCHMARK; DATASET;
D O I
10.5194/isprs-archives-XLVIII-1-W3-2023-85-2023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The article discusses a method for classifying land cover types in rural areas using a trained neural network. The focus is on distinguishing agriculturally cultivated areas and differentiating bare soil from quarry areas. This distinction is not present in publicly available databases like CORINE, UrbanAtlas, EuroSAT, or BigEarthNet. The research involves training a neural network on multitemporal patches to classify Sentinel-2 images rapidly. This approach allows automated monitoring of cultivated areas, determining periods of bare soil vulnerability to erosion, and identifying open-pit areas with similar spectral characteristics to bare soil. After training the U-Net network, it achieved an average classification accuracy of 90% (OA) in the test areas, highlighting the importance of using OA for multi-class classifications, instead of ACC. Analysis of our main classes revealed high accuracy, 99.01% for quarries, 92.3% for bare soil, and an average of 94.8% for annual crops, demonstrating the model's capability to differentiate between crops at various growth stages and assess land cover categories effectively.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 12 条
[1]   Systematic Review of GIS and Remote Sensing Applications for Assessing the Socioeconomic Impacts of Mining [J].
Ang, Michelle Li Ern ;
Owen, John R. ;
Gibbins, Christopher N. ;
Lebre, Eleonore ;
Kemp, Deanna ;
Saputra, Muhamad Risqi U. ;
Everingham, Jo-Anne ;
Lechner, Alex M. .
JOURNAL OF ENVIRONMENT & DEVELOPMENT, 2023, 32 (03) :243-273
[2]   A Review of Fine-Scale Land Use and Land Cover Classification in Open-Pit Mining Areas by Remote Sensing Techniques [J].
Chen, Weitao ;
Li, Xianju ;
He, Haixia ;
Wang, Lizhe .
REMOTE SENSING, 2018, 10 (01)
[3]   Multispectral Sentinel-2 and SAR Sentinel-1 Integration for Automatic Land Cover Classification [J].
De Fioravante, Paolo ;
Luti, Tania ;
Cavalli, Alice ;
Giuliani, Chiara ;
Dichicco, Pasquale ;
Marchetti, Marco ;
Chirici, Gherardo ;
Congedo, Luca ;
Munafo, Michele .
LAND, 2021, 10 (06)
[4]   A Sentinel-2 based multispectral convolutional neural network for detecting artisanal small-scale mining in Ghana: Applying deep learning to shallow mining [J].
Gallwey, Jane ;
Robiati, Carlo ;
Coggan, John ;
Vogt, Declan ;
Eyre, Matthew .
REMOTE SENSING OF ENVIRONMENT, 2020, 248
[5]   Reliable Crops Classification Using Limited Number of Sentinel-2 and Sentinel-1 Images [J].
Hejmanowska, Beata ;
Kramarczyk, Piotr ;
Glowienka, Ewa ;
Mikrut, Slawomir .
REMOTE SENSING, 2021, 13 (16)
[6]   EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification [J].
Helber, Patrick ;
Bischke, Benjamin ;
Dengel, Andreas ;
Borth, Damian .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (07) :2217-2226
[7]   Deep ResU-Net Convolutional Neural Networks Segmentation for Smallholder Paddy Rice Mapping Using Sentinel 1 SAR and Sentinel 2 Optical Imagery [J].
Onojeghuo, Alex Okiemute ;
Miao, Yuxin ;
Blackburn, George Alan .
REMOTE SENSING, 2023, 15 (06)
[9]  
Tercan E., 2021, El-Cezeri Fen Ve Mhendislik Derg, V8, P741, DOI [10.31202/ecjse.868373, DOI 10.31202/ECJSE.868373]
[10]  
Xu Y., 2023, Remote Sens., V15