A Robust Automated Framework for Classification of CT Covid-19 Images Using MSI-ResNet

被引:0
|
作者
Rajagopal A. [1 ]
Ahmad S. [2 ]
Jha S. [3 ]
Alagarsamy R. [4 ]
Alharbi A. [5 ]
Alouffi B. [6 ]
机构
[1] Department of Computer Science and Business Systems, Sethu Institute of Technology, Tamilnadu, , Virudhunagar, Kariapatti
[2] Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Alkharj
[3] Department of Computer Science and Engineering, School of Engineering, Kathmandu University, Kathmandu, Banepa
[4] Department of CSE, University College of Engineering, Tamilnadu, Panruti
[5] Department of Information Technology, College of Computers and Information Technology, Taif University, Taif
[6] Department of Computer Science, College of Computers and Information Technology, Taif University, Taif
来源
Computer Systems Science and Engineering | 2023年 / 45卷 / 03期
关键词
AI; Covid-19; CT images; inception; 14; multi-scale improved ResNet; VGG-16; models;
D O I
10.32604/csse.2023.025705
中图分类号
学科分类号
摘要
Nowadays, the COVID-19 virus disease is spreading rampantly. There are some testing tools and kits available for diagnosing the virus, but it is in a limited count. To diagnose the presence of disease from radiological images, automated COVID-19 diagnosis techniques are needed. The enhancement of AI (Artificial Intelligence) has been focused in previous research, which uses X-ray images for detecting COVID-19. The most common symptoms of COVID-19 are fever, dry cough and sore throat. These symptoms may lead to an increase in the rigorous type of pneumonia with a severe barrier. Since medical imaging is not suggested recently in Canada for critical COVID-19 diagnosis, computer-aided systems are implemented for the early identification of COVID-19, which aids in noticing the disease progression and thus decreases the death rate. Here, a deep learning-based automated method for the extraction of features and classification is enhanced for the detection of COVID-19 from the images of computer tomography (CT). The suggested method functions on the basis of three main processes: data preprocessing, the extraction of features and classification. This approach integrates the union of deep features with the help of Inception 14 and VGG-16 models. At last, a classifier of Multi-scale Improved ResNet (MSI-ResNet) is developed to detect and classify the CT images into unique labels of class. With the support of available open-source COVID-CT datasets that consists of 760 CT pictures, the investigational validation of the suggested method is estimated. The experimental results reveal that the proposed approach offers greater performance with high specificity, accuracy and sensitivity. © 2023 CRL Publishing. All rights reserved.
引用
收藏
页码:3215 / 3229
页数:14
相关论文
共 50 条
  • [41] Automated detection of COVID-19 from CT scan using convolutional neural network
    Mishra, Narendra Kumar
    Singh, Pushpendra
    Joshi, Shiv Dutt
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (02) : 572 - 588
  • [42] DIAGNOSING COVID-19 FROM CT IMAGES BASED ON AN ENSEMBLE LEARNING FRAMEWORK
    Li, Bingyang
    Zhang, Qi
    Song, Yinan
    Zhao, Zhicheng
    Meng, Zhu
    Su, Fei
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 8563 - 8567
  • [43] Supervised framework for COVID-19 classification and lesion localization from chest CT
    Zhang, Junyong
    Chu, Yingna
    Zhao, Na
    ETHIOPIAN JOURNAL OF HEALTH DEVELOPMENT, 2020, 34 (04)
  • [44] COVID-19 diagnosis using deep learning neural networks applied to CT images
    Akinyelu, Andronicus A.
    Blignaut, Pieter
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [45] Towards Framework for Edge Computing Assisted COVID-19 Detection using CT-scan Images
    Rohila, Varan Singh
    Gupta, Nitin
    Kaul, Amit
    Ghosh, Uttam
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [46] Detection of Covid-19 from Chest CT Images Using Deep Transfer Learning
    Irsyad, Akhmad
    Tjandrasa, Handayani
    PROCEEDINGS OF 2021 13TH INTERNATIONAL CONFERENCE ON INFORMATION & COMMUNICATION TECHNOLOGY AND SYSTEM (ICTS), 2021, : 167 - 172
  • [47] Covid-19 classification using thermal images. Thermal images capability for identifying Covid-19 using traditional machine learning classifiers
    Rebeca Canales-Fiscal, Martha
    Ortiz Lopez, Rocio
    Barzilay, Regina
    Trevino, Victor
    Cardona-Huerta, Servando
    Javier Ramirez-Trevino, Luis
    Yala, Adam
    Tamez-Pena, Jose
    12TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS (ACM-BCB 2021), 2021,
  • [48] A Deep-Learning-Based Framework for Automated Diagnosis of COVID-19 Using X-ray Images
    Khan, Irfan Ullah
    Aslam, Nida
    INFORMATION, 2020, 11 (09)
  • [49] Automatic Segmentation of COVID-19 CT Images using improved MultiResUNet
    Yang, Qi
    Li, Yunke
    Zhang, Mengyi
    Wang, Tian
    Yan, Fei
    Xie, Chao
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 1614 - 1618
  • [50] A Neural Network Designed for COVID-19 Detection Using CT Images
    Rouini, Abdelghani
    Larbi, Messaouda
    Bakria, Derradji
    Korich, Belkacem
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (04): : 152 - 155