Mapping the Spatiotemporal Variability of Particulate Matter Pollution in Delhi: Insights from Land Use Regression Modelling

被引:1
作者
Sharma, Divyansh [1 ]
Thapar, Sapan [1 ]
Jain, Deepty [2 ]
Sachdeva, Kamna [3 ]
机构
[1] TERI Sch Adv Studies, Dept Sustainable Engn, New Delhi, India
[2] Indian Inst Technol Delhi, Transportat Res & Injury Prevent Ctr, New Delhi, India
[3] Delhi Skill & Entrepreneurship Univ, Sch Sustainabil & Joint Director Acad, Dwarka, Delhi, India
基金
英国科研创新办公室;
关键词
Land use regression; PM10; PM2.5; Delhi; Urban environment; Modelling; AIR-POLLUTION; SURFACE-TEMPERATURE; PM10; CONCENTRATIONS; BLACK CARBON; URBAN FORM; PM2.5; NO2; COVER; AREAS; SCALE;
D O I
10.1007/s12524-024-01879-1
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study investigates the spatiotemporal dynamics of pollutant concentrations in Delhi through the utilization of land use regression models. Analysis of data for year 2019 from 38 monitoring stations reveal elevated PM10 and PM2.5 levels, peaking in winter ([PM10: 306.90 +/- 53.76 mu g/m(3)], [PM2.5: 185.52 +/- 31.59 mu g/m(3)]) and dropping in monsoon ([PM10: 107.77 +/- 31.19 mu g/m(3)], [PM2.5: 40.86 +/- mu g/m(3)]), surpassing national standards ([PM10: 60 mu g/m(3)], [PM2.5: 40 mu g/m(3)]). Spatial distribution analysis indicates higher concentrations in the north and northwest regions, attributed to dense habitation, industrial zones, and vehicular traffic. Analyzing particulate pollutants data for year alongside urban land use/cover features and socioeconomic variables, the study reveals a robust relationship between particulate concentrations and urban attributes, explaining 37-58% of PM2.5 and 38-62% of PM10 concentration variations. The models demonstrate good accuracy, with low RMSE values (PM2.5: 9.55, PM10: 27.49), underscoring the impact of urban landscape and surface conditions on air quality distribution. Understanding this link offers insights for better urban planning strategies that integrate air quality considerations, crucial for effective policy frameworks addressing pollution in urban environments.
引用
收藏
页码:1329 / 1346
页数:18
相关论文
共 74 条
  • [61] Assessment of near-surface air pollutants at an urban station over the central Indo-Gangetic Basin: Role of pollution transport pathways
    Singh, Amarendra
    Srivastava, Atul Kumar
    Varaprasad, V.
    Kumar, Sunil
    Pathak, Virendra
    Shukla, Arvind Kumar
    [J]. METEOROLOGY AND ATMOSPHERIC PHYSICS, 2021, 133 (04) : 1127 - 1142
  • [62] An analysis of particulate pollution using urban aerosol pollution island intensity over Delhi, India
    Singh, Janhavi
    Payra, Swagata
    Mishra, Manoj K.
    Verma, Sunita
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2022, 194 (12)
  • [63] TERI, 2018, SOURCE APPORTIONMENT
  • [64] Chemical characterization of PM2.5 and source apportionment of organic aerosol in New Delhi, India
    Tobler, Anna
    Bhattu, Deepika
    Canonaco, Francesco
    Lalchandani, Vipul
    Shukla, Ashutosh
    Thamban, Navaneeth M.
    Mishra, Suneeti
    Srivastava, Atul K.
    Bisht, Deewan S.
    Tiwari, Suresh
    Singh, Surender
    Mocnik, Grisa
    Baltensperger, Urs
    Tripathi, Sachchida N.
    Slowik, Jay G.
    Prevot, Andre S. H.
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 745
  • [65] A hybrid air pollution/land use regression model for predicting air pollution concentrations in Durban, South Africa
    Tularam, Hasheel
    Ramsay, Lisa F.
    Muttoo, Sheena
    Brunekreef, Bert
    Meliefste, Kees
    de Hoogh, Kees
    Naidoo, Rajen N.
    [J]. ENVIRONMENTAL POLLUTION, 2021, 274 (274)
  • [66] Comparison of land-use regression models between Great Britain and the Netherlands
    Vienneau, D.
    de Hoogh, K.
    Beelen, R.
    Fischer, P.
    Hoek, G.
    Briggs, D.
    [J]. ATMOSPHERIC ENVIRONMENT, 2010, 44 (05) : 688 - 696
  • [67] Improving spatial concentration estimates for nitrogen oxides using a hybrid meteorological dispersion/land use regression model in Los Angeles, CA and Seattle, WA
    Wilton, Darren
    Szpiro, Adam
    Gould, Timothy
    Larson, Timothy
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2010, 408 (05) : 1120 - 1130
  • [68] GIS based mapping of land cover changes utilizing multi-temporal remotely sensed image data in Lake Hawassa Watershed, Ethiopia
    Wondrade, Nigatu
    Dick, Oystein B.
    Tveite, Havard
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2014, 186 (03) : 1765 - 1780
  • [69] Using a land use regression model with machine learning to estimate ground level PM2.5
    Wong, Pei-Yi
    Lee, Hsiao-Yun
    Chen, Yu-Cheng
    Zeng, Yu-Ting
    Chern, Yinq-Rong
    Chen, Nai-Tzu
    Lung, Shih-Chun Candice
    Su, Huey-Jen
    Wu, Chih-Da
    [J]. ENVIRONMENTAL POLLUTION, 2021, 277
  • [70] Effect of monitoring network design on land use regression models for estimating residential NO2 concentration
    Wu, Hao
    Reis, Stefan
    Lin, Chun
    Heal, Mathew R.
    [J]. ATMOSPHERIC ENVIRONMENT, 2017, 149 : 24 - 33