Landslide susceptibility mapping using ensemble machine learning methods: a case study in Lombardy, Northern Italy

被引:2
|
作者
Xu, Qiongjie [1 ]
Yordanov, Vasil [1 ]
Amici, Lorenzo [1 ]
Brovelli, Maria Antonia [1 ]
机构
[1] Politecn Milan, Dept Civil & Environm Engn DICA, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
关键词
Landslide susceptibility mapping; machine learning; ensemble methods; geoprocessing; openness; free and open source software; LOGISTIC-REGRESSION; NEURAL-NETWORKS; AREAS;
D O I
10.1080/17538947.2024.2346263
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This study compares the performance of ensemble machine learning methods stacking, blending, and soft voting for Landslide susceptibility mapping (LSM) in a highly affected Northern Italy region, Lombardy. We first created a spatial database based on open data ensuring the accessibility to relevant information for landslide-influencing factors, historical landslide records, and areas with a very low probability of landslide occurrence called 'No Landslide Zone', an innovative concept introduced in this study. Then, open-source software was employed for developing five Machine Learning classifiers (Bagging, Random Forests, AdaBoost, Gradient Tree Boosting, and Neural Networks) which were tested at a basin scale by implementing different combinations of training and testing schemes using three use cases. The three classifiers with the highest generalization performance (Random Forests, AdaBoost, and Neural Networks) were selected and combined by ensemble methods. The soft voting showed the highest performance among them. The best model to generate the LSM for the Lombardy region was a Neural Network model trained using data from three basins, achieving an accuracy of 0.93 in Lombardy. The LSM indicates that 37% of Lombardy is in the highest landslide susceptibility categories. Our findings highlight the importance of openness in advancing LSM not only by enhancing the reproducibility and transparency of our methodology but also by promoting knowledge-sharing within the scientific community.
引用
收藏
页数:41
相关论文
共 50 条
  • [41] Landslide susceptibility assessment of South Korea using stacking ensemble machine learning
    Seung-Min Lee
    Seung-Jae Lee
    Geoenvironmental Disasters, 11
  • [42] Landslide Susceptibility Prediction Using Machine Learning Methods: A Case Study of Landslides in the Yinghu Lake Basin in Shaanxi
    Ma, Sheng
    Chen, Jian
    Wu, Saier
    Li, Yurou
    SUSTAINABILITY, 2023, 15 (22)
  • [43] A Novel Heterogeneous Ensemble Framework Based on Machine Learning Models for Shallow Landslide Susceptibility Mapping
    Tang, Haozhe
    Wang, Changming
    An, Silong
    Wang, Qingyu
    Jiang, Chenglin
    REMOTE SENSING, 2023, 15 (17)
  • [44] Landslide Susceptibility Mapping Methods Coupling with Statistical Methods, Machine Learning Models and Clustering Algorithms
    Wang Q.
    Xiong J.
    Cheng W.
    Cui X.
    Pang Q.
    Liu J.
    Chen W.
    Tang H.
    Song N.
    Journal of Geo-Information Science, 2024, 26 (03) : 620 - 637
  • [45] Evaluation and comparison of landslide susceptibility mapping methods: a case study for the Ulus district, Bartin, northern Turkey
    Eker, Arif Mert
    Dikmen, Mehmet
    Cambazoglu, Selim
    Duzgun, Sebnem H. B.
    Akgun, Haluk
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2015, 29 (01) : 132 - 158
  • [46] Mapping Landslide Susceptibility Using Machine Learning Algorithms and GIS: A Case Study in Shexian County, Anhui Province, China
    Wang, Zitao
    Liu, Qimeng
    Liu, Yu
    SYMMETRY-BASEL, 2020, 12 (12): : 1 - 18
  • [47] Enhancing landslide susceptibility mapping using a positive-unlabeled machine learning approach: a case study in Chamoli, India
    Zhang, Danrong
    Jindal, Dipali
    Roy, Nimisha
    Vangla, Prashanth
    Frost, J. David
    GEOENVIRONMENTAL DISASTERS, 2024, 11 (01)
  • [48] A Generalized Ensemble Machine Learning Approach for Landslide Susceptibility Modeling
    Bandara, Akila
    Hettiarachchi, Yashodha
    Hettiarachchi, Kusal
    Munasinghe, Sidath
    Wijesinghe, Ishara
    Thayasivam, Uthayasanker
    DATA MANAGEMENT, ANALYTICS AND INNOVATION, ICDMAI 2019, VOL 2, 2020, 1016 : 71 - 93
  • [49] Refined landslide susceptibility mapping in township area using ensemble machine learning method under dataset replenishment strategy
    Zhao, Fancheng
    Miao, Fasheng
    Wu, Yiping
    Ke, Chao
    Gong, Shunqi
    Ding, Yanming
    GONDWANA RESEARCH, 2024, 131 : 20 - 37
  • [50] Is There a Space in Landslide Susceptibility Modelling: A Case Study of Valtellina Valley, Northern Italy
    Naing, Khant Min
    Ann, Victoria Grace
    Kam, Tin Seong
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS-ICCSA 2024, PT I, 2024, 14813 : 221 - 238