Transfer learning empowers accurate pharmacokinetics prediction of small samples

被引:11
作者
Guo, Wenbo [1 ]
Dong, Yawen [2 ]
Hao, Ge-Fei [1 ]
机构
[1] Guizhou Univ, Natl Key Lab Green Pesticide, Key Lab Green Pesticide & Agr Bioengn, Minist Educ, Guiyang 550025, Peoples R China
[2] Guizhou Univ, Sch Pharmaceut Sci, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Cheminformatics; machine learning; transfer learning; pharmacokinetics prediction; multitask learning; multimodal learning;
D O I
10.1016/j.drudis.2024.103946
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Accurate assessment of pharmacokinetic (PK) properties is crucial for selecting optimal candidates and avoiding downstream failures. Transfer learning is an innovative machine learning approach enabling high-throughput prediction with limited data. Recently, transfer learning methods showed promise in predicting ADME/PK parameters. Given the prolific growth of research on transfer learning for PK prediction, a comprehensive review of its advantages and challenges is imperative. This study explores the fundamentals, classifications, toolkits and applications of various transfer learning techniques for PK prediction, demonstrating their utility through three practical case studies. This work will serve as a reference for drug design researchers.
引用
收藏
页数:16
相关论文
共 60 条
[21]   DGL-LifeSci: An Open-Source Toolkit for Deep Learning on Graphs in Life Science [J].
Li, Mufei ;
Zhou, Jinjing ;
Hu, Jiajing ;
Fan, Wenxuan ;
Zhang, Yangkang ;
Gu, Yaxin ;
Karypis, George .
ACS OMEGA, 2021, 6 (41) :27233-27238
[22]   An effective self-supervised framework for learning expressive molecular global representations to drug discovery [J].
Li, Pengyong ;
Wang, Jun ;
Qiao, Yixuan ;
Chen, Hao ;
Yu, Yihuan ;
Yao, Xiaojun ;
Gao, Peng ;
Xie, Guotong ;
Song, Sen .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
[23]   Estimating human ADME properties, pharmacokinetic parameters and likely clinical dose in drug discovery [J].
Lucas, Adam J. ;
Sproston, Joanne L. ;
Barton, Patrick ;
Riley, Robert J. .
EXPERT OPINION ON DRUG DISCOVERY, 2019, 14 (12) :1313-1327
[24]  
Ma Y., 2019, FRONTIERS DATA COMPU, V1, P105
[25]   Applying machine learning techniques for ADME-Tox prediction: a review [J].
Maltarollo, Vinicius Goncalves ;
Gertrudes, Jadson Castro ;
Oliveira, Patricia Rufino ;
Honorio, Kathia Maria .
EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY, 2015, 11 (02) :259-271
[26]   Prediction Model of Clearance by a Novel Quantitative Structure-Activity Relationship Approach, Combination DeepSnap-Deep Learning and Conventional Machine Learning [J].
Mamada, Hideaki ;
Nomura, Yukihiro ;
Uesawa, Yoshihiro .
ACS OMEGA, 2021, 6 (36) :23570-23577
[27]   Physiologically Based Pharmacokinetic Modelling for First-In-Human Predictions: An Updated Model Building Strategy Illustrated with Challenging Industry Case Studies [J].
Miller, Neil A. ;
Reddy, Micaela B. ;
Heikkinen, Aki T. ;
Lukacova, Viera ;
Parrott, Neil .
CLINICAL PHARMACOKINETICS, 2019, 58 (06) :727-746
[28]  
Obrezanova O, 2022, MOL PHARMACEUT, V19, P1488, DOI 10.1021/acs.molpharmaceut.2c00027
[29]   Prediction of the in vitro intrinsic clearance determined in suspensions of human hepatocytes by using artificial neural networks [J].
Paixao, Paulo ;
Gouveia, Luis F. ;
Morais, Jose A. G. .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2010, 39 (05) :310-321
[30]   A Survey on Transfer Learning [J].
Pan, Sinno Jialin ;
Yang, Qiang .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2010, 22 (10) :1345-1359