Transfer learning empowers accurate pharmacokinetics prediction of small samples

被引:11
作者
Guo, Wenbo [1 ]
Dong, Yawen [2 ]
Hao, Ge-Fei [1 ]
机构
[1] Guizhou Univ, Natl Key Lab Green Pesticide, Key Lab Green Pesticide & Agr Bioengn, Minist Educ, Guiyang 550025, Peoples R China
[2] Guizhou Univ, Sch Pharmaceut Sci, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Cheminformatics; machine learning; transfer learning; pharmacokinetics prediction; multitask learning; multimodal learning;
D O I
10.1016/j.drudis.2024.103946
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Accurate assessment of pharmacokinetic (PK) properties is crucial for selecting optimal candidates and avoiding downstream failures. Transfer learning is an innovative machine learning approach enabling high-throughput prediction with limited data. Recently, transfer learning methods showed promise in predicting ADME/PK parameters. Given the prolific growth of research on transfer learning for PK prediction, a comprehensive review of its advantages and challenges is imperative. This study explores the fundamentals, classifications, toolkits and applications of various transfer learning techniques for PK prediction, demonstrating their utility through three practical case studies. This work will serve as a reference for drug design researchers.
引用
收藏
页数:16
相关论文
共 60 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Opportunities and challenges using artificial intelligence in ADME/Tox [J].
Bhhatarai, Barun ;
Walters, W. Patrick ;
Hop, Cornelis E. C. A. ;
Lanza, Guido ;
Ekins, Sean .
NATURE MATERIALS, 2019, 18 (05) :418-422
[3]   Transfer Learning for Drug Discovery [J].
Cai, Chenjing ;
Wang, Shiwei ;
Xu, Youjun ;
Zhang, Weilin ;
Tang, Ke ;
Ouyang, Qi ;
Lai, Luhua ;
Pei, Jianfeng .
JOURNAL OF MEDICINAL CHEMISTRY, 2020, 63 (16) :8683-8694
[4]   FP-GNN: a versatile deep learning architecture for enhanced molecular property prediction [J].
Cai, Hanxuan ;
Zhang, Huimin ;
Zhao, Duancheng ;
Wu, Jingxing ;
Wang, Ling .
BRIEFINGS IN BIOINFORMATICS, 2022, 23 (06)
[5]   Advancing Drug Discovery via Artificial Intelligence [J].
Chan, H. C. Stephen ;
Shan, Hanbin ;
Dahoun, Thamani ;
Vogel, Horst ;
Yuan, Shuguang .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2019, 40 (08) :592-604
[6]   Deep learning and alternative learning strategies for retrospective real-world clinical data [J].
Chen, David ;
Liu, Sijia ;
Kingsbury, Paul ;
Sohn, Sunghwan ;
Storlie, Curtis B. ;
Habermann, Elizabeth B. ;
Naessens, James M. ;
Larson, David W. ;
Liu, Hongfang .
NPJ DIGITAL MEDICINE, 2019, 2 (1)
[7]   Algebraic graph-assisted bidirectional transformers for molecular property prediction [J].
Chen, Dong ;
Gao, Kaifu ;
Duc Duy Nguyen ;
Chen, Xin ;
Jiang, Yi ;
Wei, Guo-Wei ;
Pan, Feng .
NATURE COMMUNICATIONS, 2021, 12 (01)
[8]   Food Effects on Oral Drug Absorption: Application of Physiologically-Based Pharmacokinetic Modeling as a Predictive Tool [J].
Cheng, Lisa ;
Wong, Harvey .
PHARMACEUTICS, 2020, 12 (07) :1-18
[9]   Machine Learning and Artificial Intelligence in Physiologically Based Pharmacokinetic Modeling [J].
Chou, Wei-Chun ;
Lin, Zhoumeng .
TOXICOLOGICAL SCIENCES, 2023, 191 (01) :1-14
[10]   A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges [J].
Danishuddin ;
Kumar, Vikas ;
Faheem, Mohammad ;
Lee, Keun Woo .
DRUG DISCOVERY TODAY, 2022, 27 (02) :529-537