Quantum and LCD codes from skew constacyclic codes over a general class of non-chain rings

被引:4
作者
Rai, Pradeep [1 ]
Singh, Bhupendra [2 ]
Gupta, Ashok Ji [1 ]
机构
[1] IIT BHU, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
[2] Ctr Artificial Intelligence & Robot, DRDO, Bengaluru 560093, Karnataka, India
关键词
Skew constacyclic codes; Gray map; Quantum codes; LCD Codes; COMPLEMENTARY DUAL CODES; CYCLIC CODES; LINEAR CODES;
D O I
10.1007/s11128-024-04478-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study skew constacyclic codes over a class of non-chain rings T=Fq[u1,u2,& mldr;,ur]/< fi(ui),uiuj-ujui > i,j=1r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}={\mathbb {F}}_q[u_1,u_2,\ldots ,u_r]/ \langle f_i(u_i), u_iu_j-u_ju_i\rangle _{i,j=1}<^>r$$\end{document}, where q=pm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=p<^>m$$\end{document}, p is some odd prime, m is a positive integer, and fi(ui)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_i(u_i)$$\end{document} are non-constant, monic polynomials that split into distinct linear factors. We discuss the structural properties of skew constacyclic codes over T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document} and their dual. We characterize Euclidean and Hermitian dual-containing skew constacyclic codes. These characterizations serve as a foundational framework for the development of techniques to construct quantum codes. Consequently, we derive plenty of new quantum codes including many maximum distance separable (MDS) quantum codes, and many quantum codes with better parameters than existing ones. Our work further extends to the characterization of skew constacyclic Euclidean and Hermitian linear complementary dual (LCD) codes over T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document}, and we establish that their Gray images also preserve the LCD property. From this analysis, we derive numerous MDS codes and best known linear codes over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document}.
引用
收藏
页数:58
相关论文
共 81 条
[1]  
Abualrub T, 2012, AUSTRALAS J COMB, V54, P115
[2]  
Ali S, 2022, QUANTUM INF PROCESS, V21, DOI 10.1007/s11128-022-03654-y
[3]   On the Construction of Quantum and LCD Codes from Cyclic Codes over the Finite Commutative Rings [J].
Ali, Shakir ;
Alali, Amal S. ;
Jeelani, Mohammad ;
Kurulay, Muhammet ;
Oztas, Elif Segah ;
Sharma, Pushpendra .
AXIOMS, 2023, 12 (04)
[4]   On quantum and classical BCH codes [J].
Aly, Salah A. ;
Klappenecker, Andreas ;
Sarvepalli, Pradeep Kiran .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (03) :1183-1188
[5]  
[Anonymous], 2013, J. Inf. Comput. Sci, DOI DOI 10.12733/JICS20101705
[6]   Nonbinary quantum stabilizer codes [J].
Ashikhmin, A ;
Knill, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :3065-3072
[7]  
Ashraf M., 2015, INT J INF CODING, V3, P137
[8]   New Quantum and LCD Codes Over the Finite Field of Odd Characteristic [J].
Ashraf, Mohammad ;
Khan, Naim ;
Mohammad, Ghulam .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (06) :2322-2332
[9]   Quantum codes from cyclic codes over Fq + uFq + vFq + uvFq [J].
Ashraf, Mohammad ;
Mohammad, Ghulam .
QUANTUM INFORMATION PROCESSING, 2016, 15 (10) :4089-4098
[10]  
Aydin N, 2021, Arxiv, DOI arXiv:2108.03567