Domains of discontinuity of Lorentzian affine group actions

被引:0
作者
Kapovich, Michael [1 ,2 ]
Leeb, Bernhard [3 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[2] Korea Inst Adv Study, Seoul 20743, South Korea
[3] Univ Munich, Math Inst, Theresienstr 39, D-80333 Munich, Germany
关键词
Discrete groups; Affine transformations; GEOMETRICAL FINITENESS; SPACETIMES; FLOWS;
D O I
10.1007/s10711-024-00940-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove nonemptyness of domains of proper discontinuity of Anosov groups of affine Lorentzian transformations of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}<^>n$$\end{document}.
引用
收藏
页数:16
相关论文
共 27 条
  • [1] The linear part of an affine group acting properly discontinuously and leaving a quadratic form invariant
    Abels, H.
    Margulis, G. A.
    Soifer, G. A.
    [J]. GEOMETRIAE DEDICATA, 2011, 153 (01) : 1 - 46
  • [2] Abels H, 2002, J DIFFER GEOM, V60, P315
  • [3] Properly discontinuous groups of affine transformations: A survey
    Abels, H
    [J]. GEOMETRIAE DEDICATA, 2001, 87 (1-3) : 309 - 333
  • [4] Ballmann W., 1985, Progress in Mathematics
  • [5] Benoist Y, 1997, GEOM FUNCT ANAL, V7, P1, DOI 10.1007/PL00001613
  • [6] GEOMETRICAL FINITENESS WITH VARIABLE NEGATIVE CURVATURE
    BOWDITCH, BH
    [J]. DUKE MATHEMATICAL JOURNAL, 1995, 77 (01) : 229 - 274
  • [7] GEOMETRICAL FINITENESS FOR HYPERBOLIC GROUPS
    BOWDITCH, BH
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 113 (02) : 245 - 317
  • [8] Brown K S., 1989, BUILDINGS, DOI 10.1007/978-1-4612-1019-1
  • [9] Danciger J., 2022, Dynamics, Geometry, Number Theory The Impact of Margulis on Modern Mathematics, P95
  • [10] Margulis spacetimes via the arc complex
    Danciger, Jeffrey
    Gueritaud, Francois
    Kassel, Fanny
    [J]. INVENTIONES MATHEMATICAE, 2016, 204 (01) : 133 - 193