Polyp-SAM: Transfer SAM for Polyp Segmentation

被引:31
作者
Li, Yuheng [1 ,2 ]
Hu, Mingzhe [3 ]
Yang, Xiaofeng [1 ,2 ]
机构
[1] Emory Univ, Dept Radiat Oncol, Atlanta, GA 30322 USA
[2] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
[3] Emory Univ, Dept Biomed Engn, Atlanta, GA 30322 USA
来源
COMPUTER-AIDED DIAGNOSIS, MEDICAL IMAGING 2024 | 2024年 / 12927卷
基金
美国国家卫生研究院;
关键词
Polyp; colonoscopy; image segmentation; segment anything;
D O I
10.1117/12.3006809
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic segmentation of colon polyps can significantly reduce the misdiagnosis of colon cancer and improve physician annotation efficiency. While many methods have been proposed for polyp segmentation, training large-scale segmentation networks with limited colonoscopy data remains a challenge. Recently, the Segment Anything Model (SAM) has recently gained much attention in both natural image and medical image segmentation. SAM demonstrates superior performance in several vision benchmarks and shows great potential for medical image segmentation. In this study, we propose Poly-SAM, a finetuned SAM model for polyp segmentation, and compare its performance to several state-of-the-art polyp segmentation models. We also compare two transfer learning strategies of SAM with and without finetuning its encoders. Evaluated on five public datasets, our Polyp-SAM achieves state-of-the-art performance on two datasets and impressive performance on three datasets, with dice scores all above 88%. This study demonstrates the great potential of adapting SAM to medical image segmentation tasks.
引用
收藏
页数:6
相关论文
共 27 条
[1]   Towards automatic polyp detection with a polyp appearance model [J].
Bernal, J. ;
Sanchez, J. ;
Vilarino, F. .
PATTERN RECOGNITION, 2012, 45 (09) :3166-3182
[2]   WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians [J].
Bernal, Jorge ;
Javier Sanchez, F. ;
Fernandez-Esparrach, Gloria ;
Gil, Debora ;
Rodriguez, Cristina ;
Vilarino, Fernando .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 43 :99-111
[3]  
Deng-Ping Fan, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12266), P263, DOI 10.1007/978-3-030-59725-2_26
[4]  
Dong B, 2024, Arxiv, DOI [arXiv:2108.06932, 10.48550/arXiv.2108.06932, DOI 10.48550/ARXIV.2108.06932]
[5]  
He S, 2023, Arxiv, DOI [arXiv:2304.09324, DOI 10.48550/ARXIV.2304.09324]
[6]  
Hu MZ, 2023, Arxiv, DOI arXiv:2305.12447
[7]  
Hu MZ, 2023, Arxiv, DOI arXiv:2304.04920
[8]   nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Kohl, Simon A. A. ;
Petersen, Jens ;
Maier-Hein, Klaus H. .
NATURE METHODS, 2021, 18 (02) :203-+
[9]   Kvasir-SEG: A Segmented Polyp Dataset [J].
Jha, Debesh ;
Smedsrud, Pia H. ;
Riegler, Michael A. ;
Halvorsen, Pal ;
de Lange, Thomas ;
Johansen, Dag ;
Johansen, Havard D. .
MULTIMEDIA MODELING (MMM 2020), PT II, 2020, 11962 :451-462
[10]  
Kirillov A, 2023, Arxiv, DOI [arXiv:2304.02643, DOI 10.48550/ARXIV.2304.02643]