A Graph Convolutional Network Based on Sentiment Support for Aspect-Level Sentiment Analysis

被引:2
|
作者
Gao, Ruiding [1 ]
Jiang, Lei [1 ]
Zou, Ziwei [1 ]
Li, Yuan [1 ]
Hu, Yurong [2 ]
机构
[1] Hunan Univ Sci & Technol Xiangtan, Sch Comp Sci & Engn, Xiangtan 411201, Peoples R China
[2] Jingchu Univ Technol, Sch Comp Engn, Jingmen 448000, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 07期
关键词
aspect-level sentiment analysis; graph convolutional network; attention mechanisms; sentiment support words;
D O I
10.3390/app14072738
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aspect-level sentiment analysis is a research focal point for natural language comprehension. An attention mechanism is a very important approach for aspect-level sentiment analysis, but it only fuses sentences from a semantic perspective and ignores grammatical information in the sentences. Graph convolutional networks (GCNs) are a better method for processing syntactic information; however, they still face problems in effectively combining semantic and syntactic information. This paper presents a sentiment-supported graph convolutional network (SSGCN). This SSGCN first obtains the semantic information of the text through aspect-aware attention and self-attention; then, a grammar mask matrix and a GCN are applied to preliminarily combine semantic information with grammatical information. Afterward, the processing of these information features is divided into three steps. To begin with, features related to the semantics and grammatical features of aspect words are extracted. The second step obtains the enhanced features of the semantic and grammatical information through sentiment support words. Finally, it concatenates the two features, thus enhancing the effectiveness of the attention mechanism formed from the combination of semantic and grammatical information. The experimental results show that compared with benchmark models, the SSGCN had an improved accuracy of 6.33-0.5%. In macro F1 evaluation, its improvement range was 11.68-0.5%.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Aspect-level sentiment analysis based on semantic heterogeneous graph convolutional network
    Zeng, Yufei
    Li, Zhixin
    Chen, Zhenbin
    Ma, Huifang
    FRONTIERS OF COMPUTER SCIENCE, 2023, 17 (06)
  • [2] Aspect-level sentiment analysis: A survey of graph convolutional network methods
    Phan, Huyen Trang
    Nguyen, Ngoc Thanh
    Hwang, Dosam
    INFORMATION FUSION, 2023, 91 : 149 - 172
  • [3] A Parallel Fusion Graph Convolutional Network for Aspect-Level Sentiment Analysis
    Wu, Yuxin
    Deng, Guofeng
    BIG DATA RESEARCH, 2023, 32
  • [4] Aspect-Level Sentiment Analysis Based on Self-Attention and Graph Convolutional Network
    Chen K.
    Huang C.
    Lin H.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2024, 47 (01): : 127 - 132
  • [5] Aspect-Dependent Heterogeneous Graph Convolutional Network for Aspect-Level Sentiment Analysis
    Zhang, Zebao
    Hu, Congmei
    Pan, Haiwei
    Wang, Yong
    Xu, Yuezhu
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [6] A novel semantic dependency and aspect interaction graph convolutional network for aspect-level sentiment analysis
    Zhu, Yihong
    Chen, Xiaoliang
    Fu, Junsen
    Du, Yajun
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 2763 - 2769
  • [7] MulGCN: MultiGraph Convolutional Network for Aspect-Level Sentiment Analysis
    Phan, Huyen Trang
    Nguyen, Van Du
    Nguyen, Ngoc Thanh
    IEEE ACCESS, 2025, 13 : 26304 - 26317
  • [8] Syntactic Graph Attention Network for Aspect-Level Sentiment Analysis
    Yuan L.
    Wang J.
    Yu L.-C.
    Zhang X.
    IEEE. Trans. Artif. Intell., 2024, 1 (140-153): : 140 - 153
  • [9] Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification
    Zhao, Pinlong
    Hou, Linlin
    Wu, Ou
    KNOWLEDGE-BASED SYSTEMS, 2020, 193
  • [10] A novel adaptive marker segmentation graph convolutional network for aspect-level sentiment analysis
    Wang, Pengcheng
    Tao, Linping
    Tang, Mingwei
    Zhao, Mingfeng
    Wang, Liuxuan
    Xu, Yangsheng
    Tian, Jiaxin
    Meng, Kezhu
    KNOWLEDGE-BASED SYSTEMS, 2023, 270