EUROPEAN OPTION PRICING IN THE GENERALIZED MIXED WEIGHTED FRACTIONAL BROWNIAN MOTION

被引:1
作者
Xu, Feng [1 ]
Han, Miao [2 ]
机构
[1] Suzhou Vocat Univ, Sch Business, Suzhou 215104, Peoples R China
[2] China Univ Min & Technol, Sch Math, Xuzhou 221116, Peoples R China
关键词
Generalized Mixed Weighted Fractional Brownian Motion; Arbitrage-Free Pricing Theory; Option Pricing; Numerical Analysis; CALCULUS;
D O I
10.1142/S0218348X24400309
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In order to describe the self-similarity and long-range dependence of financial asset prices, this paper adopts a new fractional-type process, i.e, the generalized mixed weighted fractional Brownian motion to describe the dynamic change process of risky asset prices. A European option pricing model driven by the generalized mixed weighted fractional Brownian motion is constructed, and explicit solutions to the pricing formulas of European call options and European put options are derived by using the arbitrage-free pricing theory. Finally, through numerical simulation, the influence of the parameter on the option price is analyzed.
引用
收藏
页数:6
相关论文
共 13 条
[1]   Stochastic calculus with respect to Gaussian processes [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
ANNALS OF PROBABILITY, 2001, 29 (02) :766-801
[2]  
[Anonymous], 1989, ANAL J, V45, P434
[3]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[4]   Occupation time limits of inhomogeneous Poisson systems of independent particles [J].
Bojdecki, T. ;
Gorostiza, L. G. ;
Talarczyk, A. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2008, 118 (01) :28-52
[5]  
Charles Z., APPL
[6]   The pricing and numerical analysis of lookback options for mixed fractional Brownian motion [J].
Chen, Qisheng ;
Zhang, Qian ;
Liu, Chuan .
CHAOS SOLITONS & FRACTALS, 2019, 128 :123-128
[7]   Mixed fractional Brownian motion [J].
Cheridito, P .
BERNOULLI, 2001, 7 (06) :913-934
[8]   Fractional white noise calculus and applications to finance [J].
Hu, YZ ;
Oksendal, B .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2003, 6 (01) :1-32
[9]   A Special Study of the Mixed Weighted Fractional Brownian Motion [J].
Khalaf, Anas D. ;
Zeb, Anwar ;
Saeed, Tareq ;
Abouagwa, Mahmoud ;
Djilali, Salih ;
Alshehri, Hashim M. .
FRACTAL AND FRACTIONAL, 2021, 5 (04)
[10]  
Necula C., 2004, ADV EC FINANCIAL RES, V2, P259