Assessing Robustness and Vulnerability in Interdependent Network Infrastructure: A Multilayer Network Approach

被引:3
作者
Huynh, Phat K. [1 ]
Rahman, M. Mishkatur [2 ]
Yadav, Om P. [3 ]
Le, Trung Q. [1 ]
Le, Chau [4 ]
机构
[1] Univ S Florida, Dept Ind & Management Syst Engn, Tampa, FL 33620 USA
[2] North Dakota State Univ, Dept Ind & Mfg Engn, Fargo, ND USA
[3] North Carolina A&T State Univ, Dept Ind & Syst Engn, Greensboro, NC USA
[4] North Dakota State Univ, Dept Civil Construct & Environm Engn, Fargo, ND USA
来源
2024 ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, RAMS | 2024年
基金
美国国家科学基金会;
关键词
interdependent network infrastructure; multilayer network; cascade failure; robustness analysis; COMPLEX NETWORKS; BEHAVIOR; DYNAMICS; ERROR;
D O I
10.1109/RAMS51492.2024.10457643
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Modern societies profoundly depend upon interdependent critical infrastructure systems, such as the power grid, oil pipeline, gas pipeline, and transportation system, for proper functioning. These systems are extensively interconnected, characterized by their interconnected layers of infrastructures, which presents unique complexities that can complicate their analysis. Furthermore, if one system fails, it can have a ripple effect throughout the entire network. Hence, it is crucial to evaluate the robustness and vulnerability of interdependent critical infrastructure systems with complex inter-layer and intra-layer dependencies to ensure their continued operation and after-math resilience. In response to these challenges, this study presents a method for evaluating the robustness, vulnerability, and efficiency of multi-layer infrastructures using various probabilistic evaluation measures. We considered three key parameters: the number of nodes (N), the denseness of network connections (DL), and node failure probability (p). We modeled these complex systems using Erdos-Renyi graphs and investigated the impact of three parameters: N, DL, and P. We considered two network sizes, N = 50 and N = 100, each divided into two layers with equal nodes. The DL and p parameters represent the distinct characteristics of different infrastructures, which are considered independently for each layer. We simulated four scenarios varying DL and p across layers and examined the topological transformations induced by these variations. The results indicated that a larger network size generally enhances network robustness and efficiency while reducing vulnerability, highlighting the importance of considering network size in multi-layer network design. Also, the interplay between DL and p significantly influences network behavior, with a high DL mitigating the impact of high node failure probabilities on network robustness. These insights offer valuable guidelines for improving network resilience against potential node failures and are crucial for infrastructure designers and network analysts.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Error and attack tolerance of complex networks [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 2000, 406 (6794) :378-382
[2]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[3]   Percolation in networks composed of connectivity and dependency links [J].
Bashan, Amir ;
Parshani, Roni ;
Havlin, Shlomo .
PHYSICAL REVIEW E, 2011, 83 (05)
[4]   Structural measures for multiplex networks [J].
Battiston, Federico ;
Nicosia, Vincenzo ;
Latora, Vito .
PHYSICAL REVIEW E, 2014, 89 (03)
[5]   Assessing the criticality of interdependent power and gas systems using complex networks and load flow techniques [J].
Beyza, Jesus ;
Ruiz-Paredes, Hector F. ;
Garcia-Paricio, Eduardo ;
Yusta, Jose M. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 540
[6]   The structure and dynamics of multilayer networks [J].
Boccaletti, S. ;
Bianconi, G. ;
Criado, R. ;
del Genio, C. I. ;
Gomez-Gardenes, J. ;
Romance, M. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zanin, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01) :1-122
[7]   Catastrophic cascade of failures in interdependent networks [J].
Buldyrev, Sergey V. ;
Parshani, Roni ;
Paul, Gerald ;
Stanley, H. Eugene ;
Havlin, Shlomo .
NATURE, 2010, 464 (7291) :1025-1028
[8]   Breakdown of the internet under intentional attack [J].
Cohen, R ;
Erez, K ;
ben-Avraham, D ;
Havlin, S .
PHYSICAL REVIEW LETTERS, 2001, 86 (16) :3682-3685
[9]   Efficiency of scale-free networks: error and attack tolerance [J].
Crucitti, P ;
Latora, V ;
Marchiori, M ;
Rapisarda, A .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 320 :622-642
[10]   Navigability of interconnected networks under random failures [J].
De Domenico, Manlio ;
Sole-Ribalta, Albert ;
Gomez, Sergio ;
Arenas, Alex .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (23) :8351-8356