Estimating the lattice thermal conductivity of AlCoCrNiFe high-entropy alloy using machine learning

被引:5
作者
Lu, Jie [1 ]
Huang, Xiaona [1 ]
Yue, Yanan [1 ]
机构
[1] Wuhan Univ, Sch Power & Mech Engn, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
STRENGTH; PREDICTION; DESIGN;
D O I
10.1063/5.0201042
中图分类号
O59 [应用物理学];
学科分类号
摘要
The lattice thermal conductivity stands as a pivotal thermos-physical parameter of high-entropy alloys; nonetheless, achieving precise predictions of the lattice thermal conductivity for high-entropy alloys poses a formidable challenge due to their complex composition and structure. In this study, machine learning models were built to predict the lattice thermal conductivity of AlCoCrNiFe high-entropy alloy based on molecular dynamic simulations. Our model shows high accuracy with R-2, mean absolute percentage error, and root mean square error of the test set is 0.91, 0.031, and 1.128 W m(-1) k(-1), respectively. In addition, a high-entropy alloy with low a lattice thermal conductivity of 2.06 W m(-1) k(-1) (Al8Cr30Co19Ni20Fe23) and with a high lattice thermal conductivity of 5.29 W m(-1) k(-1) (Al0.5Cr28.5Co25Ni25.5Fe20.5) was successfully predicted, which shows good agreement with the results from molecular dynamics simulations. The mechanisms of the thermal conductivity divergence are further explained through their phonon density of states and elastic modulus. The established model provides a powerful tool for developing high-entropy alloys with the desired properties
引用
收藏
页数:8
相关论文
共 45 条
[1]   Effects of aluminum content on thermoelectric performance of AlxCoCrFeNi high-entropy alloys [J].
Al Hasan, Md Abdullah ;
Wang, Jiaqi ;
Shin, Seungha ;
Gilbert, Dustin A. ;
Liaw, Peter K. ;
Tang, Nan ;
Liyanage, W. L. Namila C. ;
Santodonato, Louis ;
DeBeer-Schmitt, Lisa ;
Butch, Nicholas P. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 883
[2]   Recent advances in lattice thermal conductivity calculation using machine-learning interatomic potentials [J].
Arabha, Saeed ;
Aghbolagh, Zahra Shokri ;
Ghorbani, Khashayar ;
Hatam-Lee, S. Milad ;
Rajabpour, Ali .
JOURNAL OF APPLIED PHYSICS, 2021, 130 (21)
[3]   A review on laser cladding of high-entropy alloys, their recent trends and potential applications [J].
Arif, Zia Ullah ;
Khalid, Muhammad Yasir ;
Rehman, Ehtsham Ur ;
Ullah, Sibghat ;
Atif, Muhammad ;
Tariq, Ali .
JOURNAL OF MANUFACTURING PROCESSES, 2021, 68 :225-273
[4]   Determination of atomic-scale structure and compressive behavior of solidified AlCxCoFeCuNi high entropy alloys [J].
Bahramyan, Mehran ;
Mousavian, Reza Taherzadeh ;
Brabazon, Dermot .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 171
[5]   A combined neural network and mechanistic approach for the prediction of corrosion rate and yield strength of magnesium-rare earth alloys [J].
Birbilis, N. ;
Cavanaugh, M. K. ;
Sudholz, A. D. ;
Zhu, S. M. ;
Easton, M. A. ;
Gibson, M. A. .
CORROSION SCIENCE, 2011, 53 (01) :168-176
[6]   Lattice thermal conductivity of multi-component alloys [J].
Caro, M. ;
Beland, L. K. ;
Samolyuk, G. D. ;
Stoller, R. E. ;
Caro, A. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 648 :408-413
[7]   Short-range ordering and its impact on thermodynamic property of high-entropy alloys [J].
Chen, Shuai ;
Wang, Tian ;
Li, Xiaoyan ;
Cheng, Yuan ;
Zhang, Gang ;
Gao, Huajian .
ACTA MATERIALIA, 2022, 238
[8]   Unexpected thermal conductivity enhancement in aperiodic superlattices discovered using active machine learning [J].
Chowdhury, Prabudhya Roy ;
Ruan, Xiulin .
NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
[9]   Prediction and optimization of the thermal transport in hybrid carbon-boron nitride honeycombs using machine learning [J].
Du, Yao ;
Ying, Penghua ;
Zhang, Jin .
CARBON, 2021, 184 :492-503
[10]   Model interatomic potentials for Fe-Ni-Cr-Co-Al high-entropy alloys [J].
Farkas, Diana ;
Caro, Alfredo .
JOURNAL OF MATERIALS RESEARCH, 2020, 35 (22) :3031-3040