HEAT TRANSFER PERFORMANCE AND FRICTION FACTOR OF VARIOUS NANOFLUIDS IN A DOUBLE-TUBE COUNTER FLOW HEAT EXCHANGER

被引:0
|
作者
ZHEN D. [1 ]
WANG J. [1 ]
PANG Y. [1 ]
CHEN Z. [2 ]
SUNDEN B. [3 ]
机构
[1] School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin
[2] Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China, Tianjin
[3] Department of Energy Sciences, Division of Heat Transfer, Lund University, Lund
来源
WANG, Jin (wjwcn00@163.com); SUNDEN, Bengt (bengt.sunden@energy.lth.se) | 1600年 / Serbian Society of Heat Transfer Engineers卷 / 24期
关键词
double-tube heat exchanger; empirical formulae; flow resistance; nanofluids; Nusselt number;
D O I
10.2298/TSCI200323280Z
中图分类号
学科分类号
摘要
Experimental research was conducted to reveal the effects of nanofluids on heat transfer performance in a double-tube heat exchanger. With nanoparticle weight fraction of 0.5-2.0% and Reynolds number of 4500-14500, the flow resistance and heat transfer were analyzed by using six nanofluids, i.e., CuO-water, Al2O3-water, Fe3O4-water, ZnO-water, SiC-water, SiO2-water nanofluids. Results show that SiC-water nanofluid with a weight concentration of 1.5% provides the best improvement of heat transfer performance. 1.0% CuO-water and 0.5% SiO2-water nanofluids have lower friction factors in the range of Reynolds number from 4500-14500 compared to the other nanofluids. Based on test results of heat transfer performance and flow resistance, the 1.0% CuO-water nanofluid shows a great advantage due to a relatively high heat transfer performance and a low friction factor. Finally, empirical formulae of Nusselt numbers for various nanofluids were established based on experimental data tested in the double-tube heat exchanger. © 2020 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.. All Rights Reserved.
引用
收藏
页码:3601 / 3612
页数:11
相关论文
共 50 条
  • [1] HEAT TRANSFER PERFORMANCE AND FRICTION FACTOR OF VARIOUS NANOFLUIDS IN A DOUBLE-TUBE COUNTER FLOW HEAT EXCHANGER
    Zheng, Dan
    Wang, Jin
    Pang, Yu
    Chen, Zhanxiu
    Sunden, Bengt
    THERMAL SCIENCE, 2020, 24 (06): : 3601 - 3612
  • [2] Heat transfer and friction factor analysis of MWCNT nanofluids in double helically coiled tube heat exchanger
    P. C. Mukesh Kumar
    M. Chandrasekar
    Journal of Thermal Analysis and Calorimetry, 2021, 144 : 219 - 231
  • [3] Heat transfer and friction factor analysis of MWCNT nanofluids in double helically coiled tube heat exchanger
    Mukesh Kumar, P. C.
    Chandrasekar, M.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 144 (01) : 219 - 231
  • [4] Different methods to calculate heat transfer coefficient in a double-tube heat exchanger: A comparative study
    Raei, Behrouz
    Shahraki, Farhad
    Jamialahmadi, M.
    Peyghambarzadeh, S. M.
    EXPERIMENTAL HEAT TRANSFER, 2018, 31 (01) : 32 - 46
  • [5] Property of water-nanoparticle flow and heat transfer in the double-tube heat exchanger with nanofluid
    Shi, Ruifang
    Lin, Wenqian
    Lin, Jianzhong
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2023,
  • [6] Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment
    Qi, Cong
    Luo, Tao
    Liu, Maoni
    Fan, Fan
    Yan, Yuying
    ENERGY CONVERSION AND MANAGEMENT, 2019, 197
  • [7] Experimental study on flow and heat transfer of non-Newtonian fluid in a corrugated double-tube heat exchanger
    Lu W.
    Miao R.
    Wu Z.
    Wu C.
    Xie W.
    Huagong Xuebao/CIESC Journal, 2022, 73 (07): : 2924 - 2932
  • [8] Heat transfer of nanofluids in a shell and tube heat exchanger
    Farajollahi, B.
    Etemad, S. Gh.
    Hojjat, M.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (1-3) : 12 - 17
  • [9] Feasibility review of using copper oxide nanofluid to improve heat transfer in the double-tube heat exchanger
    Kadhim, Saif Ali
    Hammoodi, Karrar A.
    Askar, Ali Habeeb
    Rashid, Farhan Lafta
    Wahhab, Hasanain A. Abdul
    RESULTS IN ENGINEERING, 2024, 24
  • [10] Enhancing heat transfer in a double-tube heat exchanger using perforated twisted tape and nanofluid
    Marzouk, S. A.
    Aljabr, Ahmad
    Almehmadi, Fahad Awjah
    Sharaf, Maisa A.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2025,