Figurate numbers, forms of mixed type, and their representation numbers

被引:1
作者
Ramakrishnan, B. [1 ]
Vaishya, Lalit [2 ]
机构
[1] Indian Stat Inst, North East Ctr, Tezpur 784501, Assam, India
[2] Inst Math Sci HBNI, CIT Campus,Taramani, Chennai 600113, India
关键词
Higher figurate numbers; Triangular numbers; Quadratic forms; Modular forms; Theta series; Generalised eta-quotient; INTEGERS; SUMS;
D O I
10.1007/s11139-024-00868-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider the problem of determining formulas for the number of representations of a natural number n by a sum of figurate numbers with certain positive integer coefficients. To achieve this, we prove that the associated generating function gives rise to a modular form of integral weight under certain conditions on the coefficients when even number of higher figurate numbers are considered. In particular, we obtain the modular property of the generating function corresponding to a sum of even number of triangular numbers with coefficients. We also obtain the modularity property of the generating function of mixed forms involving figurate numbers (including the squares and triangular numbers) with coefficients and forms of the type m2+mn+n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m<^>2+mn+n<^>2$$\end{document} with coefficients. In particular, we show the modularity of the generating function of odd number of squares and odd number of triangular numbers (with coefficients). As a consequence, explicit formulas for the number of representations of these mixed forms are obtained using a basis of the corresponding space of modular forms of integral weight. We also obtain several applications concerning the triangular numbers with coefficients similar to the ones obtained in Ono et al. (Aequat Math 50:73-94, 1995). In 2016, Xia et al. (Int J Number Theory 12:945-954) considered some special cases of mixed forms and obtained the number of representations of these 21 mixed forms using the (p, k) parametrization method. We also derive these 21 formulas using our method and further obtain as a consequence, the (p, k) parametrization of the Eisenstein series E4(tau)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_4(\tau )$$\end{document} and its duplications. It is to be noted that the (p, k) parametrization of E4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_4$$\end{document} and its duplications were derived by a different method in [3, 8]. We illustrate our method with several examples.
引用
收藏
页码:1261 / 1284
页数:24
相关论文
共 23 条
  • [1] Alaca A., 2009, J COMBIN NUMBER THEO, V1, P89
  • [2] Alaca A., 2006, Advances in Theoretical and Applied Mathematics, V1, P27
  • [3] Theta function identities and representations by certain quaternary quadratic forms
    Alaca, Ayse
    Alaca, Saban
    Lemire, Mathieu F.
    Williams, Kenneth S.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (02) : 219 - 239
  • [4] Nineteen quaternary quadratic forms
    Alaca, Ayse
    Alaca, Saban
    Lemire, Mathieu F.
    Williams, Kenneth S.
    [J]. ACTA ARITHMETICA, 2007, 130 (03) : 277 - 310
  • [5] On the two-dimensional theta functions of the Borweins
    Alaca, Ayse
    Alaca, Saban
    Williams, Kenneth S.
    [J]. ACTA ARITHMETICA, 2006, 124 (02) : 177 - 195
  • [6] Representations by octonary quadratic forms with coefficients 1, 2, 3 or 6
    Alaca, Ayse
    Kesicioglu, M. Nesibe
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (03) : 735 - 749
  • [7] On the number of representations of a positive integer as a sum of two binary quadratic forms
    Alaca, Saban
    Pehlivan, Lerna
    Williams, Kenneth S.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (06) : 1395 - 1420
  • [8] Berndt BC., 1991, Ramanujans Notebooks, DOI DOI 10.1007/978-1-4612-0965-2
  • [9] Dummit D., 1985, CONT MATH, V45, P89, DOI DOI 10.1090/CONM/045/822235
  • [10] Representations of integers as sums of an even number of squares
    Imamoglu, Ö
    Kohnen, W
    [J]. MATHEMATISCHE ANNALEN, 2005, 333 (04) : 815 - 829