Modeling of tungsten impurity transport and distribution in EAST based on multi-fluid and kinetic Monte Carlo simulations

被引:0
作者
Wen, Ziyang [1 ]
Chen, Yiping [2 ]
Zhang, Ling [2 ]
机构
[1] Anhui Univ, Inst Phys Sci & Informat Technol, Hefei 230601, Anhui, Peoples R China
[2] Chinese Acad Sci, Inst Plasma Phys, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
PHYSICS; SUPPORT; ITER;
D O I
10.1063/5.0175476
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In recent years, the materials of plasma facing components, such as divertor target plates, domes, and outer walls of tokamaks, such as ASDEX Upgrade, WEST, JET, EAST, and ITER, have been changed from carbon to tungsten because of its lower erosion and tritium retention rates. Impurities are produced by interactions between the plasma and the first wall. This study provides an investigation to simulate the transport and distribution of tungsten impurities in the edge plasma on EAST. The 2D multi-fluid edge plasma transport code SOLPS-ITER and 2D kinetic Monte Carlo impurity transport code DIVIMP were used in the simulations. The multi-fluid model in SOLPS-ITER and the kinetic Monte Carlo model in DIVIMP were employed to treat tungsten impurity ions. The 2D density contour distributions in the computational region and the 1D density radial profiles at the inner and outer midplanes of tungsten impurity particles with ionization states (W-0-W+74) and the total tungsten particles with all charge states were obtained. With the heating power 1.5 MW and the line-averaged plasma density 2 x 10(19) m(-3), the results from SOLPS-ITER and DIVIMP show that the maximum density of tungsten ion with single ionization state is about 10(14) m(-3) and the total density of tungsten impurities with all charge states is about 10(15) m(-3) at the core boundary. To the best of our knowledge, the simulation results from SOLPS-ITER and DIVIMP are compared for the first time to benchmark SOLPS-ITER with the multi-fluid mode and DIVIMP with the kinetic model for tungsten impurity transport. The density distributions of tungsten impurities with different ionization states from SOLPS-ITER and DIVIMP are highly similar, and good agreement can be found under similar conditions involved in the calculation. From the comparison benchmark between SOLPS-ITER and DIVIMP for tungsten impurity transport, it can be concluded that the impurity transport approximation used by DIVIMP is good.
引用
收藏
页数:19
相关论文
共 30 条
[1]   New developments in plasma edge modeling with particular emphasis on drift flows and electric fields [J].
Baelmans, M ;
Reiter, D ;
Weynants, RR .
CONTRIBUTIONS TO PLASMA PHYSICS, 1996, 36 (2-3) :117-126
[2]   Presentation of the New SOLPS-ITER Code Package for Tokamak Plasma Edge Modelling [J].
Bonnin, Xavier ;
Dekeyser, Wouter ;
Pitts, Richard ;
Coster, David ;
Voskoboynikov, Serguey ;
Wiesen, Sven .
PLASMA AND FUSION RESEARCH, 2016, 11 :1-6
[3]   WEST Physics Basis [J].
Bourdelle, C. ;
Artaud, J. F. ;
Basiuk, V. ;
Becoulet, M. ;
Bremond, S. ;
Bucalossi, J. ;
Bufferand, H. ;
Ciraolo, G. ;
Colas, L. ;
Corre, Y. ;
Courtois, X. ;
Decker, J. ;
Delpech, L. ;
Devynck, P. ;
Dif-Pradalier, G. ;
Doerner, R. P. ;
Douai, D. ;
Dumont, R. ;
Ekedahl, A. ;
Fedorczak, N. ;
Fenzi, C. ;
Firdaouss, M. ;
Garcia, J. ;
Ghendrih, P. ;
Gil, C. ;
Giruzzi, G. ;
Goniche, M. ;
Grisolia, C. ;
Grosman, A. ;
Guilhem, D. ;
Guirlet, R. ;
Gunn, J. ;
Hennequin, P. ;
Hillairet, J. ;
Hoang, T. ;
Imbeaux, F. ;
Ivanova-Stanik, I. ;
Joffrin, E. ;
Kallenbach, A. ;
Linke, J. ;
Loarer, T. ;
Lotte, P. ;
Maget, P. ;
Marandet, Y. ;
Mayoral, M. L. ;
Meyer, O. ;
Missirlian, M. ;
Mollard, P. ;
Monier-Garbet, P. ;
Moreau, P. .
NUCLEAR FUSION, 2015, 55 (06)
[4]   Radiative divertor modelling for ITER and TPX [J].
Braams, BJ .
CONTRIBUTIONS TO PLASMA PHYSICS, 1996, 36 (2-3) :276-281
[5]   Erosion, screening, and migration of tungsten in the JET divertor [J].
Brezinsek, S. ;
Kirschner, A. ;
Mayer, M. ;
Baron-Wiechec, A. ;
Borodkina, I ;
Borodin, D. ;
Coffey, I ;
Coenen, J. ;
den Harder, N. ;
Eksaeva, A. ;
Guillemaut, C. ;
Heinola, K. ;
Huber, A. ;
Huber, V ;
Imrisek, M. ;
Jachmich, S. ;
Pawelec, E. ;
Rubel, M. ;
Krat, S. ;
Sergienko, G. ;
Matthews, G. F. ;
Meigs, A. G. ;
Wiesen, S. ;
Widdowson, A. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. ;
Alves, E. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amicucci, L. ;
Amosov, V. ;
Sunden, E. Andersson ;
Angelone, M. .
NUCLEAR FUSION, 2019, 59 (09)
[6]   Benchmarking Tokamak edge modelling codes [J].
Coster, DP ;
Bonnin, X ;
Corrigan, G ;
Kirnev, GS ;
Matthews, G ;
Spence, J .
JOURNAL OF NUCLEAR MATERIALS, 2005, 337 (1-3) :366-370
[7]  
Eckstein W., 1993, MPI-Garching Report No. IPP-9/82
[8]   Modelling of tungsten migration during limiter ramp-down in the ASDEX upgrade divertor tokamak [J].
Geier, A ;
Krieger, K ;
Neu, R ;
Coster, DP ;
Elder, JD ;
Pugno, R ;
Rohde, V .
NUCLEAR FUSION, 2005, 45 (08) :849-855
[9]   The JET programme in support of ITER [J].
Horton, Lorne .
FUSION ENGINEERING AND DESIGN, 2012, 87 (5-6) :625-629
[10]  
Kotov V., 2007, 4257 JUEL