Optimized parallelization of boundary integral Poisson-Boltzmann solvers

被引:0
作者
Yang, Xin [1 ]
Sliheet, Elyssa [1 ]
Iriye, Reece [1 ]
Reynolds, Daniel [1 ]
Geng, Weihua [1 ]
机构
[1] Southern Methodist Univ, Dept Math, Dallas, TX 75275 USA
基金
美国国家科学基金会;
关键词
Poisson-Boltzmann; Boundary integral; Treecode; MPI; GPU; COVID-19; ADAPTIVE TREECODE; CRYSTAL-STRUCTURE; ELECTROSTATICS; ALGORITHM; ENERGY; SIMULATIONS; SURFACE; VERSION;
D O I
10.1016/j.cpc.2024.109125
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Poisson -Boltzmann (PB) model governs the electrostatics of solvated biomolecules, i.e., potential, field, energy, and force. These quantities can provide useful information about protein properties, functions, and dynamics. By considering the advantages of current algorithms and computer hardware, we focus on the parallelization of the treecode-accelerated boundary integral (TABI) PB solver using the Message Passing Interface (MPI) on CPUs and the direct -sum boundary integral (DSBI) PB solver using KOKKOS on GPUs. We provide optimization guidance for users when the DSBI solver on GPU or the TABI solver with MPI on CPU should be used depending on the size of the problem. Specifically, when the number of unknowns is smaller than a predetermined threshold, the GPU-accelerated DSBI solver converges rapidly thus has the potential to perform PB model-based molecular dynamics or Monte Carlo simulation. As practical applications, our parallelized boundary integral PB solvers are used to solve electrostatics on selected proteins that play significant roles in the spread, treatment, and prevention of COVID-19 virus diseases. For each selected protein, the simulation produces the electrostatic solvation energy as a global measurement and electrostatic surface potential for local details.
引用
收藏
页数:11
相关论文
共 51 条
[1]   A HIERARCHICAL O(N-LOG-N) FORCE-CALCULATION ALGORITHM [J].
BARNES, J ;
HUT, P .
NATURE, 1986, 324 (6096) :446-449
[2]  
Beard DA, 2001, BIOPOLYMERS, V58, P106, DOI 10.1002/1097-0282(200101)58:1<106::AID-BIP100>3.0.CO
[3]  
2-#
[4]   A sparse octree gravitational N-body code that runs entirely on the GPU processor [J].
Bedorf, Jeroen ;
Gaburov, Evghenii ;
Zwart, Simon Portegies .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (07) :2825-2839
[5]   High performance direct gravitational N-body simulations on graphics processing units II:: An implementation in CUDA [J].
Belleman, Robert G. ;
Bedorf, Jeroen ;
Portegies Zwart, Simon .
NEW ASTRONOMY, 2008, 13 (02) :103-112
[6]  
Burtscher M., 2011, An efficient CUDA implementation of the tree-based barnes hut n-body algorithm, P75
[7]   APBSmem: A Graphical Interface for Electrostatic Calculations at the Membrane [J].
Callenberg, Keith M. ;
Choudhary, Om P. ;
de Forest, Gabriel L. ;
Gohara, David W. ;
Baker, Nathan A. ;
Grabe, Michael .
PLOS ONE, 2010, 5 (09)
[8]   A Cartesian FMM-accelerated Galerkin boundary integral Poisson-Boltzmann solver [J].
Chen, Jiahui ;
Tausch, Johannes ;
Geng, Weihua .
JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 478
[9]   MLIMC: Machine learning-based implicit-solvent Monte Carlo [J].
Chen, Jiahui ;
Geng, Weihua ;
Wei, Guo-Wei .
CHINESE JOURNAL OF CHEMICAL PHYSICS, 2021, 34 (06) :683-694
[10]   Cyclically parallelized treecode for fast computations of electrostatic interactions on molecular surfaces [J].
Chen, Jiahui ;
Geng, Weihua ;
Reynolds, Daniel R. .
COMPUTER PHYSICS COMMUNICATIONS, 2021, 260