Multi-scale Attention Conditional GAN for Underwater Image Enhancement

被引:0
|
作者
Li, Yiming [1 ,2 ]
Li, Fei [1 ,2 ]
Li, Zhenbo [1 ,2 ,3 ]
机构
[1] China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
[2] Minist Agr & Rural Affairs, Natl Innovat Ctr Digital Fishery, Beijing 100083, Peoples R China
[3] Minist Agr & Rural Affairs, Key Lab Agr Informat Acquisit Technol, Beijing, Peoples R China
关键词
Conditional Generative Adversarial Network; Underwater Image Enhancement; Attention Module; QUALITY ASSESSMENT;
D O I
10.1007/978-3-031-50069-5_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Underwater image enhancement (UIE) has achieved impressive achievements in various marine tasks, such as aquaculture and biological monitoring. However, complex underwater scenarios impede current UIE method application development. Some UIEmethods utilize convolutional neural network (CNN) based models to improve the quality of degradation images, but these methods fail to capture multi-scale high-level features, leading to sub-optimal results. To address these issues, we propose a multi-scale attention conditional generative adversarial network (GAN), dubbed Mac-GAN, to recover the degraded underwater images by utilizing an encoder-decoder structure. Concretely, a novel multi-scale conditional GAN architecture is utilized to aggregate the multi-scale features and reconstruct the high-quality underwater images with high perceptual information. Different from the reference model, a novel attention module (AMU) is designed to integrate associated features among the channels for the UIE tasks and embedded after the down sampling layer, effectively suppressing non-significant features to improve the extraction effect of multi-scale features. Meanwhile, perceptual loss and total variation loss are utilized to enhance smoothness and suppress artifacts. Extensive experiments demonstrate that our proposed model achieves remarkable results in terms of qualitative and quantitative metrics, such as 0.7dB improvement in PSNR metrics and 0.8dB improvement in UIQM metrics. Moreover, Mac-GAN can generate a pleasing visual result without obvious over-enhancement and over-saturation over the comparison of UIE methods. A detailed set of ablation experiments analyzes core components' contribution to the proposed approach.
引用
收藏
页码:463 / 475
页数:13
相关论文
共 50 条
  • [1] Multi-scale cascaded attention network for underwater image enhancement
    Zhao, Gaoli
    Wu, Yuheng
    Zhou, Ling
    Zhao, Wenyi
    Zhang, Weidong
    FRONTIERS IN MARINE SCIENCE, 2025, 12
  • [2] Underwater Image Enhancement with Multi-Scale Residual Attention Network
    Ueki, Yosuke
    Ikehara, Masaaki
    2021 INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2021,
  • [3] Multi-scale network with attention mechanism for underwater image enhancement
    Tao, Ye
    Tang, Jinhui
    Zhao, Xinwei
    Zhou, Chen
    Wang, Chong
    Zhao, Zhonglei
    NEUROCOMPUTING, 2024, 595
  • [4] Underwater Image Enhancement Based on Multi-Scale Attention and Contrast Learning
    Wang Yue
    Fan Huijie
    Liu Shiben
    Tang Yandong
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (04)
  • [5] Underwater image enhancement synthesizing multi-scale information and attention mechanisms
    Xia X.
    Zhong Y.
    Hu P.
    Yao Y.
    Geng J.
    Zhang L.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (10): : 1582 - 1594
  • [6] Multi-scale Underwater Image Enhancement Network Based on Attention Mechanism
    Fang Ming
    Liu Xiaohan
    Fu Feiran
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (12) : 3513 - 3521
  • [7] Incorporating Triple Attention and Multi-scale Pyramid Network for Underwater Image Enhancement
    Sun, Kaichuan
    Tian, Yubo
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2023, 20 (03) : 387 - 397
  • [8] Msap: multi-scale attention probabilistic network for underwater image enhancement network
    Chang, Baocai
    Li, Jinjiang
    Wang, Haiyang
    Li, Mengjun
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 653 - 661
  • [9] Generative adversarial networks with multi-scale and attention mechanisms for underwater image enhancement
    Wang, Ziyang
    Zhao, Liquan
    Zhong, Tie
    Jia, Yanfei
    Cui, Ying
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [10] Underwater Image Enhancement Based on Multi-Scale Feature Fusion and Attention Network
    Liu Y.
    Liu M.
    Lin S.
    Tao Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (05): : 685 - 695