Amplitude equation for a diffusion-reaction system in presence of complexing reaction with the activator species: the Brusselator model

被引:1
作者
Dutt, A. K. [1 ,2 ]
机构
[1] Chem Phys Res Unit, 16 Ghanarajpur Jalapara, Hooghly 712302, West Bengal, India
[2] Univ West England, Fac Appl Sci, Frenchay Campus, Bristol BS16 1QY, England
关键词
Hopf-wave bifurcation; Turing patterns; Diffusion-reaction systems; Amplitude equation; TURING PATTERNS; CHEMICAL OSCILLATORS; INSTABILITY; CONVECTION; SELECTION; DYNAMICS; DESIGN; WATER;
D O I
10.1007/s10910-024-01574-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For Brusselator diffusion-reaction model involving complex forming reaction with the activator species, an amplitude equation has been derived in the framework of a weakly nonlinear theory. Complexing reaction with the activator species strongly influences the time-dependent amplitudes such as in Hopf-wave bifurcations, whereas time-independent amplitudes such as in Turing-bifurcations, are independent of complexing reaction with the activator species. Complexing reaction arrests the arrival of Hopf-bifurcations and the domain of excitable non-oscillations such created may be used effectively for Turing-structure generation by inducing inhomogeneous perturbations of nonzero wavenumber mode. Any major complexing interaction with the activator species in a biological oscillatory network is bound to alter the domains of Hopf/Turing bifurcations affecting the course of physiological self-organization processes.
引用
收藏
页码:1682 / 1726
页数:45
相关论文
共 49 条
  • [11] PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM
    CROSS, MC
    HOHENBERG, PC
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (03) : 851 - 1112
  • [12] CHLORITE IODIDE REACTION - A VERSATILE SYSTEM FOR THE STUDY OF NONLINEAR DYNAMIC BEHAVIOR
    DEKEPPER, P
    BOISSONADE, J
    EPSTEIN, IR
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1990, 94 (17) : 6525 - 6536
  • [13] TURING-TYPE CHEMICAL-PATTERNS IN THE CHLORITE-IODIDE-MALONIC ACID REACTION
    DEKEPPER, P
    CASTETS, V
    DULOS, E
    BOISSONADE, J
    [J]. PHYSICA D, 1991, 49 (1-2): : 161 - 169
  • [14] SYSTEMATIC DESIGN OF CHEMICAL OSCILLATORS - BATCH OSCILLATIONS AND SPATIAL WAVE PATTERNS IN CHLORITE OSCILLATING-SYSTEMS .8.
    DEKEPPER, P
    EPSTEIN, IR
    KUSTIN, K
    ORBAN, M
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1982, 86 (02) : 170 - 171
  • [15] PATTERN SELECTION AND LOCALIZED STRUCTURES IN REACTION-DIFFUSION SYSTEMS
    DEWEL, G
    BORCKMANS, P
    DEWIT, A
    RUDOVICS, B
    PERRAUD, JJ
    DULOS, E
    BOISSONADE, J
    DEKEPPER, P
    [J]. PHYSICA A, 1995, 213 (1-2): : 181 - 198
  • [16] Spatiotemporal dynamics near a codimension-two point
    DeWit, A
    Lima, D
    Dewel, G
    Borckmans, P
    [J]. PHYSICAL REVIEW E, 1996, 54 (01): : 261 - 271
  • [17] Dynamics of Turing pattern monolayers close to onset
    Dufiet, V
    Boissonade, J
    [J]. PHYSICAL REVIEW E, 1996, 53 (05): : 4883 - 4892
  • [18] Amplitude equation for a diffusion-reaction system: The reversible Sel'kov model
    Dutt, A. K.
    [J]. AIP ADVANCES, 2012, 2 (04):
  • [19] Turing pattern amplitude equation for a model glycolytic reaction-diffusion system
    Dutt, A. K.
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 48 (04) : 841 - 855
  • [20] Wavenumber distribution in Hopf-wave instability: The reversible Selkov model of glycolytic oscillation
    Dutt, AK
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (37) : 17679 - 17682