High-rate quasi-solid-state hybrid supercapacitor of hierarchical flowers of hydrated tungsten oxide nanosheets

被引:0
作者
Gupta S.P. [1 ]
More M.A. [2 ]
Late D.J. [3 ]
Walke P.S. [1 ]
机构
[1] National Centre for Nanosciences and Nanotechnology, University of Mumbai, Mumbai
[2] Department of Physics, Savitribai Phule Pune University, Pune
[3] Centre for Nanosciences and Nanotechnology, Amity University, Pune-Bombay Expressway, Panvel, Mumbai
关键词
Hybrid supercapacitor; Intercalated pseudocapacitance; Nanosheets; Reduced graphene oxide; Van-der-Waals gap;
D O I
10.1016/j.electacta.2020.137389
中图分类号
学科分类号
摘要
Morphology modification and crystal structure engineering of electrode materials play a significant role in their electrochemical storage performance. We report a single step, room temperature preparation of self-assembled hierarchical flowers of hydrated WO3 nanosheets by a wet-chemical method for quasi-solid-state hybrid supercapacitor. The nanosheets exhibit the single crystalline-layered structure separated by confining water molecules auspicious for intercalation and proton conduction mutually. The excellent capacitance 457 Fg−1 at a low scan-rate of 2 mVs−1 is prominently achieved owing to the intercalated pseudocapacitance through vital proton diffusion into the electrode. Further, the temperature-dependent electrochemical analysis implies the robust, sustainable feature of hierarchical WO3 flowers. A quasi-solid-state hybrid supercapacitor of WO3//reduced graphene oxide (rGO) demonstrates a large total working voltage of 1.6 V, ensuring the high energy density of 31 WhKg−1. Thus the structural and morphological engineering of the tungsten oxide anode has emphasized a great potential of proton insertions that revolutionize the electrochemical storage technology. © 2020 Elsevier Ltd
引用
收藏
相关论文
共 43 条
  • [11] Wang Y., Chen Z., Lei T., Ai Y., Peng Z., Yan X., Li H., Zhang J., Wang Z.M., Chueh Y.L., Hollow NiCo<sub>2</sub>S<sub>4</sub> nanospheres hybridized with 3D hierarchical porous RGO/Fe<sub>2</sub>O<sub>3</sub> composites toward high-performance energy storage device, Adv. Energy Mater., 8, 16, pp. 1-11, (2018)
  • [12] Gupta S., Patil V., Tarwal N., Bhame S., Gosavi S., Mulla I., Late D., Suryavanshi S., Walke P., Enhanced energy density and stability of self-assembled cauliflower of Pd doped monoclinic WO<sub>3</sub> nanostructure supercapacitor, Mater. Chem. Phys., 225, pp. 192-199, (2019)
  • [13] Suryawanshi S., Kaware V., Chakravarty D., Walke P., More M., Joshi K., Rout C., Late D., Pt-nanoparticle functionalized carbon nano-onions for ultra-high energy supercapacitors and enhanced field emission behavior, RSC Adv., 5, 99, pp. 80990-80997, (2016)
  • [14] Mitchell J.B., Geise N.R., Paterson A.R., Osti N.C., Sun Y., Fleischmann S., Zhang R., Madsen L.A., Toney M.F., Jiang D.E., Kolesnikov A.I., Mamontov E., Augustyn V., Confined interlayer water promotes structural stability for high-rate electrochemical proton intercalation in tungsten oxide hydrates, ACS Energy Lett., 4, pp. 2805-2812, (2019)
  • [15] Gupta S.P., Nishad H.H., Chakane S.D., Gosavi S.W., Late D.J., Walke P.S., Phase transformation in tungsten oxide nanoplates as a function of post-annealing temperature and its electrochemical influence on energy storage, Nanoscale Adv., 2, pp. 4689-4701, (2020)
  • [16] Zhu M., Meng W., Huang Y., Huang Y., Zhi C., Proton-insertion-enhanced pseudocapacitance based on the assembly structure of tungsten oxide, ACS Appl. Mater. Interfaces, 6, 21, pp. 18901-18910, (2014)
  • [17] Gerand B., Nowogrocki G., Figlarz M., A new tungsten trioxide hydrate, WO<sub>3</sub>•13H<sub>2</sub>O: Preparation, characterization, and crystallographic study, J. Solid State Chem., 38, 3, pp. 312-320, (1981)
  • [18] Daniel M.F., Desbat B., Lassegues J.C., Gerand B., Figlarz M., Infrared and raman study of WO<sub>3</sub> tungsten trioxides and WO<sub>3</sub>, XH<sub>2</sub>O tungsten trioxide tydrates, J, Solid State Chem, 67, 2, pp. 235-247, (1987)
  • [19] Gupta S.P., Nishad H., Magdum V., Walke P.S., High-performance supercapacitor electrode and photocatalytic dye degradation of mixed-phase WO<sub>3</sub> nanoplates, Maters. Letts., 281, (2020)
  • [20] Kattouf B., Frey G.L., Siegmann A., Ein-Eli Y., Enhanced reversible electrochromism via in situ phase transformation in tungstate monohydrate, Chem. Comm., 47, pp. 7396-7398, (2009)