A New One-Point Metric on Ptolemaic Spaces

被引:0
作者
Chen, Xinyu [1 ]
Zhang, Xiaohui [1 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Sci, Hangzhou 310018, Peoples R China
关键词
One-point metric; Gromov hyperbolicity; Ptolemaic space; quasiconformality; quasisymmetry; HYPERBOLIC METRICS;
D O I
10.1007/s00025-024-02209-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, given p, p(1), p(2),...,p(k) in a Ptolemaic space (X, d),we introduce a new one-point metric S-p(x, y) = log (1 + d(x, y)/root 1 + d (x, p)root 1 + d(y, p)) and the average of such kind of metrics S(x, y) = 1/k & sum;(k )(i=1) S-pi(x, y) for x, y is an element of X. We prove the Gromov hyperbolicity of these metrics. We compare the metric S-p with the metric S-p and the metric d of the base metric space (X, d). We show the quasiconformality of the identity map id : (X, d) -> (X, S-p) and discuss the relations between the identity map and bilipschitzian maps, quasisymmetric maps and quasi-Mobius maps.
引用
收藏
页数:17
相关论文
共 27 条
  • [1] AVERAGING ONE-POINT HYPERBOLIC-TYPE METRICS
    Aksoy, Asuman Guven
    Ibragimov, Zair
    Whiting, Wesley
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (12) : 5205 - 5218
  • [2] Beardon A. F., 2007, The hyperbolic metric and geometric function theory, Quasiconformal mappings and their applications, P9
  • [3] Beardon AF, 1998, QUASICONFORMAL MAPPINGS AND ANALYSIS, P91
  • [4] Bonk M, 2002, J DIFFER GEOM, V61, P81
  • [5] Growth of Some Hyperbolic Type Distances and Starlikeness of Metric Balls
    Cao, Jiejun
    Zhang, Xiaohui
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (03)
  • [6] A New Intrinsic Metric on Metric Spaces
    Cui, Yumiao
    Xiao, Yingqing
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 2941 - 2958
  • [7] UNIFORM DOMAINS AND THE QUASI-HYPERBOLIC METRIC
    GEHRING, FW
    OSGOOD, BG
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1979, 36 : 50 - 74
  • [8] QUASI-CONFORMALLY HOMOGENEOUS DOMAINS
    GEHRING, FW
    PALKA, BP
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1976, 30 : 172 - 199
  • [9] Gehring FW., 2017, Mathematical Surveys and Monographs
  • [10] Hariri P., 2020, Springer Monogr. Math.