Recent Advancements in Li-ion Batteries Electrolytes: A Review

被引:0
|
作者
Mohamed, Lamiaa Z. [1 ]
Abdelfatah, Aliaa [1 ]
Selim, Ahmed M. [1 ,2 ]
Elhamid, Abd Elhamid M. Abd [2 ]
Reda, Y. [3 ]
El-Raghy, S. M. [1 ]
Abdel-Karim, R. [1 ]
机构
[1] Cairo Univ, Fac Engn, Min Petr & Met Engn Dept, Giza 12613, Egypt
[2] Elect Res Inst, Nanotechnol Lab, Cairo 12622, Egypt
[3] Canal High Inst Engn & Technol, Suez 11712, Egypt
关键词
Li-ion battery; Electrolytes; Electrolyte classes; Electrolyte filling; Li-ion batteries safety; NONAQUEOUS LIQUID ELECTROLYTES; LITHIUM-ION; FLUOROETHYLENE CARBONATE; SOLID-STATE; POLYMER ELECTROLYTE; TRANSPORT-PROPERTIES; VINYLENE CARBONATE; FILLING PROCESS; RECENT PROGRESS; ENERGY-STORAGE;
D O I
10.56042/ijpap.v62i5.7942
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lithium-ion batteries (LIBs) have emerged as important power sources in recent years, and their improved performance is accelerating the adoption of electric vehicles (EVs) as viable alternatives to internal combustion engines. A focal point for the international community of materials scientists, computational physicists, and chemists is the exploration of innovative materials for LIBs, with an overarching emphasis on addressing concerns related to safety, durability, energy density (ED), and affordability during the developmental stages. The electrolyte, serving as a solvent containing conducting salt and additional substances, plays a critical role, while the incorporation of additives is explored to enhance security, performance, and recyclability. To meet the multifaceted demands of automotive and grid applications, batteries necessitate advancements in power, durability, safety, environmental sustainability, and cost-effectiveness. Overcoming challenges associated with current LIBs, primarily those crafted from flammable and volatile organic solvents, becomes imperative. Addressing issues such as large electrochemical windows (Ews), a broad working temperature range, appropriate safety measures, and optimal surface reactions on electrodes for controlled passivation without compromising low impedance are formidable tasks. This review aims to comprehensively diverse LIB electrolyte types, facilitating the development of enhanced electrolytes for high-performance LIBs. Furthermore, it advocates for the design and implementation of safer electrolytes in future LIB iterations. The exploration of electrolyte additives is also a subject of investigation. The conclusion underscores the imperative to consider cell longevity when devising electrolytes for applications requiring rapid charging.
引用
收藏
页码:397 / 411
页数:15
相关论文
共 50 条
  • [41] Li-Ion Batteries
    Battaglini, John
    ADVANCED MATERIALS & PROCESSES, 2010, 168 (07): : 26 - 27
  • [42] Li-ion batteries
    Battaglini, John
    Advanced Materials and Processes, 2010, 168 (07): : 26 - 27
  • [43] LI-ION BATTERIES
    不详
    ELECTRONICS WORLD, 2016, 122 (1957): : 6 - 6
  • [44] Design of electrolyte solutions for Li and Li-ion batteries: a review
    Aurbach, D
    Talyosef, Y
    Markovsky, B
    Markevich, E
    Zinigrad, E
    Asraf, L
    Gnanaraj, JS
    Kim, HJ
    ELECTROCHIMICA ACTA, 2004, 50 (2-3) : 247 - 254
  • [45] All-solid-state Li-ion batteries with commercially available electrolytes: A feasibility review
    Goetz, Rainer
    Streng, Raphael
    Sterzinger, Johannes
    Steeger, Tim
    Kaye, Matti M.
    Vitort, Maksym
    Bandarenka, Aliaksandr S.
    INFOMAT, 2024, 6 (12)
  • [46] Recent Advancements in Interface between Cathode and Garnet Solid Electrolyte for All Solid State Li-ion Batteries
    Li Dong
    Lei Chao
    Lai Hua
    Liu Xiao-Lin
    Yao Wen-Li
    Liang Tong-Xiang
    Zhong Sheng-Wen
    JOURNAL OF INORGANIC MATERIALS, 2019, 34 (07) : 694 - 702
  • [47] High-energy cathode materials for Li-ion batteries: A review of recent developments
    YiDi Zhang
    Yi Li
    XinHui Xia
    XiuLi Wang
    ChangDong Gu
    JiangPing Tu
    Science China Technological Sciences, 2015, 58 : 1809 - 1828
  • [48] Recent Development of Polyolefin-Based Microporous Separators for Li-Ion Batteries: A Review
    Heidari, Ali Akbar
    Mahdavi, Hossein
    CHEMICAL RECORD, 2020, 20 (06): : 570 - 595
  • [49] High-energy cathode materials for Li-ion batteries: A review of recent developments
    ZHANG YiDi
    LI Yi
    XIA XinHui
    WANG XiuLi
    GU ChangDong
    TU JiangPing
    Science China(Technological Sciences), 2015, (11) : 1809 - 1828
  • [50] Li-ion battery electrolytes
    Xu, Kang
    NATURE ENERGY, 2021, 6 (07) : 763 - 763