Potentials and hotspots of post-lithium-ion batteries: Environmental impacts and supply risks for sodium- and potassium-ion batteries

被引:9
|
作者
Yokoi, Ryosuke [1 ]
Kataoka, Riki [2 ]
Masese, Titus [2 ]
Bach, Vanessa [3 ]
Finkbeiner, Matthias [3 ]
Weil, Marcel [4 ,5 ]
Baumann, Manuel [4 ]
Motoshita, Masaharu [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Inst Sci Safety & Sustainabil, 16-1 Onogawa, Tsukuba 3058569, Japan
[2] Natl Inst Adv Ind Sci & Technol, Res Inst Electrochem Energy, 1-8-31 Midorigaoka, Ikeda 5638577, Japan
[3] Tech Univ Berlin, Inst Environm Technol, Chair Sustainable Engn, Str 17 Juni 135, D-10623 Berlin, Germany
[4] Karlsruhe Inst Technol KIT, Inst Technol Assessment & Syst Anal ITAS, Karlsruhe, Germany
[5] Helmholtz Inst Ulm Electrochem Energy Storage HIU, Ulm, Germany
关键词
Sodium -ion batteries; Potassium -ion batteries; Lithium -ion batteries; Life cycle assessment; Criticality assessment; Hotspot analysis; LIFE-CYCLE ASSESSMENT; LAYERED OXIDE CATHODES; HIGH-ENERGY DENSITY; K-ION; CHALLENGES; ANODE; PERFORMANCE; FRAMEWORK; STORAGE; METALS;
D O I
10.1016/j.resconrec.2024.107526
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lithium -ion batteries (LIBs) currently have the dominant market share in rechargeable batteries, a key technology reducing greenhouse gas emissions. However, concerns regarding the environmental impacts of manufacturing and requirements for critical resources result in the need for developing alternative battery technologies as well as improving LIBs. This study assessed environmental impacts and supply risks associated with three post-LIBs, namely two sodium -ion batteries (NMMT and NTO) and one potassium -ion battery (KFSF), and three LIBs (NMC, LFP, and LTO) using life cycle assessment and criticality assessment. Post-LIBs showed comparable environmental performances and lower supply risks compared with LIBs. The environmental hotspots were NiSO4 production for cathode for NMMT and NMC, and TiO2 production for anode for NTO and LTO. KFSF anode and cathode had no significant environmental impacts, achieving the best performance. LIBs had higher supply risks than the other batteries, mainly attributed to Li and Co used as electrode constituents.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Prussian Blue@MoS2 Layer Composites as Highly Efficient Cathodes for Sodium- and Potassium-Ion Batteries
    Morant-Giner, Marc
    Sanchis-Gual, Roger
    Romero, Jorge
    Alberola, Antonio
    Garcia-Cruz, Leticia
    Agouram, Said
    Galbiati, Marta
    Padial, Natalia M.
    Waerenborgh, Joao C.
    Marti-Gastaldo, Carlos
    Tatay, Sergio
    Forment-Aliaga, Alicia
    Coronado, Eugenio
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (27)
  • [32] CuO Nanoplates for High-Performance Potassium-Ion Batteries
    Cao, Kangzhe
    Liu, Huiqiao
    Li, Wangyang
    Han, Qingqing
    Zhang, Zhang
    Huang, Kejing
    Jing, Qiangshan
    Jiao, Lifang
    SMALL, 2019, 15 (36)
  • [33] Research progress on carbon anode materials in potassium-ion batteries
    Lei Yu
    Han Da
    Qin Lei
    Zhai Deng-yun
    Kang Fei-yu
    NEW CARBON MATERIALS, 2019, 34 (06) : 499 - 511
  • [34] Research progresses on metal-organic frameworks for sodium/potassium-ion batteries
    Xin, Ben-Jian
    Wu, Xing-Long
    BATTERY ENERGY, 2024, 3 (04):
  • [35] Organic Electrolytes for Stable and Safe Potassium-Ion Batteries
    Xu, Shu
    Yi, Xianhui
    Fan, Ling
    Lu, Bingan
    BATTERIES & SUPERCAPS, 2024,
  • [36] Computational screening of anode materials for potassium-ion batteries
    Yu, Seungho
    Kim, Sang-Ok
    Kim, Hyung-Seok
    Choi, Wonchang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (13) : 7646 - 7654
  • [37] Research progress on vanadium oxides for potassium-ion batteries
    Wu, Yuhan
    Chen, Guangbo
    Wu, Xiaonan
    Li, Lin
    Yue, Jinyu
    Guan, Yinyan
    Hou, Juan
    Shi, Fanian
    Liang, Jiyan
    JOURNAL OF SEMICONDUCTORS, 2023, 44 (04)
  • [38] Recent Advances and Perspectives on the Polymer Electrolytes for Sodium/Potassium-Ion Batteries
    Yin, Hang
    Han, Chengjun
    Liu, Qirong
    Wu, Fayu
    Zhang, Fan
    Tang, Yongbing
    SMALL, 2021, 17 (31)
  • [39] Elucidating electrochemical intercalation mechanisms of biomass-derived hard carbon in sodium-/potassium-ion batteries
    Zhu, Ziyi
    Zhong, Wentao
    Zhang, Yanjia
    Dong, Peng
    Sun, Shigang
    Zhang, Yingjie
    Li, Xue
    CARBON ENERGY, 2021, 3 (04) : 541 - 553
  • [40] Advanced and sustainable functional materials for potassium-ion batteries
    Salado, Manuel
    Amores, Marco
    Pozo-Gonzalo, Cristina
    Forsyth, Maria
    Lanceros-Mendez, Senentxu
    ENERGY MATERIALS, 2023, 3 (05):