Higher-order interactions in Kuramoto oscillators with inertia

被引:11
作者
Jaros, Patrycja [1 ]
Ghosh, Subrata [1 ,2 ]
Dudkowski, Dawid [1 ]
Dana, Syamal K. [1 ,3 ]
Kapitaniak, Tomasz [1 ]
机构
[1] Lodz Univ Technol, Div Dynam, Stefanowskiego 1-15, PL-90924 Lodz, Poland
[2] Int Inst Informat Technol, Ctr Computat Nat Sci & Bioinformat, Hyderabad 500032, India
[3] Natl Inst Technol, Dept Math, Durgapur 713209, India
关键词
COMPLEX NETWORKS; SYNCHRONIZATION; DYNAMICS;
D O I
10.1103/PhysRevE.108.024215
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
How do higher-order interactions influence the dynamical landscape of a network of the second-order phase oscillators? We address this question using three coupled Kuramoto phase oscillators with inertia under pairwise and higher-order interactions, in search of various collective states, and new states, if any, that show marginal presence or absence under pairwise interactions. We explore this small network for varying phase lag in the coupling and over a range of negative to positive coupling strength of pairwise as well as higher-order or group interactions. In the extended coupling parameter plane of the network we record several well-known states such as synchronization, frequency chimera states, and rotating waves that appear with distinct boundaries. In the parameter space, we also find states generated by the influence of higher-order interactions: The 2+1 antipodal point and the 2+1 phase-locked states. Our results demonstrate the importantance of the choices of the phase lag and the sign of the higher-order coupling strength for the emergent dynamics of the network. We provide analytical support to our numerical results.
引用
收藏
页数:11
相关论文
共 47 条
[1]   Chimera states for coupled oscillators [J].
Abrams, DM ;
Strogatz, SH .
PHYSICAL REVIEW LETTERS, 2004, 93 (17) :174102-1
[2]   ARGUMENTS IN FAVOR OF HIGHER-ORDER INTERACTIONS [J].
ABRAMS, PA .
AMERICAN NATURALIST, 1983, 121 (06) :887-891
[3]   Intralayer and interlayer synchronization in multiplex network with higher-order interactions [J].
Anwar, Md Sayeed ;
Ghosh, Dibakar .
CHAOS, 2022, 32 (03)
[4]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[5]   Topological Signal Processing Over Simplicial Complexes [J].
Barbarossa, Sergio ;
Sardellitti, Stefania .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 :2992-3007
[6]   The physics of higher-order interactions in complex systems [J].
Battiston, Federico ;
Amico, Enrico ;
Barrat, Alain ;
Bianconi, Ginestra ;
Ferraz de Arruda, Guilherme ;
Franceschiello, Benedetta ;
Iacopini, Iacopo ;
Kefi, Sonia ;
Latora, Vito ;
Moreno, Yamir ;
Murray, Micah M. ;
Peixoto, Tiago P. ;
Vaccarino, Francesco ;
Petri, Giovanni .
NATURE PHYSICS, 2021, 17 (10) :1093-1098
[7]  
Bianconi G., 2021, Higher-Order Networks: An Introduction to Simplicial Complexes
[8]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[9]  
Boccaletti S., 2018, Synchronization: From Coupled Systems to Complex Networks
[10]   Controlling species densities in structurally perturbed intransitive cycles with higher-order interactions [J].
Chatterjee, Sourin ;
Chowdhury, Sayantan Nag ;
Ghosh, Dibakar ;
Hens, Chittaranjan ;
Hens, Chittaranjan .
CHAOS, 2022, 32 (10)