Egocentric Vulnerable Road Users Trajectory Prediction With Incomplete Observation

被引:0
作者
Liu, Hui [1 ]
Liu, Chunsheng [1 ]
Chang, Faliang [1 ]
Lu, Yansha [1 ]
Liu, Minhang [1 ]
机构
[1] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
基金
中国国家自然科学基金;
关键词
Trajectory; Feature extraction; Training; Roads; Pedestrians; Long short term memory; Encoding; Incomplete observation; egocentric trajectory prediction; vulnerable road users; memory bank; feature fusion;
D O I
10.1109/TITS.2024.3388671
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Vulnerable Road Users (VRUs) trajectory prediction aims to analyze the future movements of pedestrians and cyclists for intelligent driving. Most previous methods just focus on VRUs trajectory prediction using idealized complete observations, and rare consider occlusions and tracking losses. Focus on the incomplete observation problem, we propose a novel Observation Store and Query Fusion Network (OSQF-Net), for VRUs trajectory prediction with incomplete observation. Firstly, based on the external memory bank mechanism and complete-incomplete observation joint training strategy, a Memory Bank-based Feature Store and Query Module (MSQ-Module) is proposed to extract complete motion features, from disrupted motion patterns caused by incomplete observation. Subsequently, based on temporal extraction and attention mechanism, a Spatio-Temporal Fusion Module (STF-Module) is proposed to effectively fuse the pseudo-complete motion features and incomplete motion features in both spatial and temporal dimensions. Finally, with these two modules and a CVAE network, the OSQF-Net can generate a latent space with complete motion patterns, which guides future trajectory prediction. Experimental results demonstrate that OSQF-Net achieves superior prediction performance and real-time inference capability for egocentric VRUs trajectory prediction, under both complete and incomplete observation scenarios.
引用
收藏
页码:13694 / 13705
页数:12
相关论文
共 52 条
[1]   MissFormer: (In-)Attention-Based Handling of Missing Observations for Trajectory Filtering and Prediction [J].
Becker, Stefan ;
Hug, Ronny ;
Huebner, Wolfgang ;
Arens, Michael ;
Morris, Brendan Tran .
ADVANCES IN VISUAL COMPUTING (ISVC 2021), PT I, 2021, 13017 :521-533
[2]   Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [J].
Bhattacharyya, Apratim ;
Reino, Daniel Olmeda ;
Fritz, Mario ;
Schiele, Bernt .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :6404-6413
[3]   Pedestrian Graph plus : A Fast Pedestrian Crossing Prediction Model Based on Graph Convolutional Networks [J].
Cadena, Pablo Rodrigo Gantier ;
Qian, Yeqiang ;
Wang, Chunxiang ;
Yang, Ming .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) :21050-21061
[4]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[5]   SCOUT: Socially-COnsistent and UndersTandable Graph Attention Network for Trajectory Prediction of Vehicles and VRUs [J].
Carrasco, S. ;
Fernandez-Llorca, D. ;
Sotelo, M. A. .
2021 32ND IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2021, :1501-1508
[6]   Personalized Trajectory Prediction via Distribution Discrimination [J].
Chen, Guangyi ;
Li, Junlong ;
Zhou, Nuoxing ;
Ren, Liangliang ;
Lu, Jiwen .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :15560-15569
[7]   Vulnerable Road User Trajectory Prediction for Autonomous Driving Using a Data-Driven Integrated Approach [J].
Chen, Hao ;
Liu, Yinhua ;
Hu, Chuan ;
Zhang, Xi .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (07) :7306-7317
[8]   Vision-Based Real-Time Online Vulnerable Traffic Participants Trajectory Prediction for Autonomous Vehicle [J].
Chen, Hao ;
Liu, Yinhua ;
Zhao, Baixuan ;
Hu, Chuan ;
Zhang, Xi .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (03) :2110-2122
[9]   ScePT: Scene-consistent, Policy-based Trajectory Predictions for Planning [J].
Chen, Yuxiao ;
Ivanovic, Boris ;
Pavone, Marco .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :17082-17091
[10]   Goal-driven Self-Attentive Recurrent Networks for Trajectory Prediction [J].
Chiara, Luigi Filippo ;
Coscia, Pasquale ;
Das, Sourav ;
Calderara, Simone ;
Cucchiara, Rita ;
Ballan, Lamberto .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, :2517-2526