Explainable Artificial Intelligence (XAI) 2.0: A manifesto of open challenges and interdisciplinary research directions

被引:77
|
作者
Longo, Luca [1 ,2 ]
Brcic, Mario [3 ]
Cabitza, Federico [4 ,5 ]
Choi, Jaesik [6 ,7 ]
Confalonieri, Roberto [8 ]
Del Ser, Javier [9 ,10 ,11 ]
Guidotti, Riccardo [12 ]
Hayashi, Yoichi [13 ]
Herrera, Francisco [11 ]
Holzinger, Andreas [14 ]
Jiang, Richard [15 ]
Khosravi, Hassan [16 ]
Lecue, Freddy [17 ]
Malgieri, Gianclaudio [18 ]
Paez, Andres [19 ,20 ]
Samek, Wojciech [21 ,22 ,23 ]
Schneider, Johannes [24 ]
Speith, Timo [25 ,26 ]
Stumpf, Simone [27 ]
机构
[1] Artificial Intelligence & Cognit Load Res Lab, Dublin, Ireland
[2] Technol Univ Dublin, Sch Comp Sci, Dublin, Ireland
[3] Univ Zagreb, Fac Elect Engn & Comp, Zagreb, Croatia
[4] Univ Milano Bicocca, Milan, Italy
[5] IRCCS Osped Galeazzi St Ambrogio, Milan, Italy
[6] Korea Adv Inst Sci & Technol KAIST, Kim Jaechul Grad Sch AI, Daejeon, South Korea
[7] INEEJI Corp, Seongnam, South Korea
[8] Univ Padua, Dept Math, Padua, Italy
[9] TECNALIA, Basque Res & Technol Alliance BRTA, Derio, Spain
[10] Univ Basque Country, UPV EHU, Bilbao, Spain
[11] Univ Granada, DaSCI Andalusian Inst Data Sci & Computat Intellig, Dept Comp Sci & Artificial Intelligence, Granada, Spain
[12] Univ Pisa, Pisa, Italy
[13] Meiji Univ, Dept Comp Sci, Tokyo, Japan
[14] Univ Nat Resources & Life Sci Vienna, Human Ctr AI Lab, Vienna, Austria
[15] Univ Lancaster, Sch Comp & Commun, Lancaster, England
[16] Univ Queensland, Brisbane, Australia
[17] INRIA, Natl Inst Res Digital Sci & Technol, Sophia Antipolis, France
[18] Leiden Univ, eLaw Ctr Law & Digital Technol, Leiden, Netherlands
[19] Univ Andes, Dept Philosophy, Bogota, Colombia
[20] Univ Los Andes, Ctr Res & Format Artificial Intelligence CinfonIA, Bogota, Colombia
[21] Tech Univ Berlin, Berlin, Germany
[22] Fraunhofer Heinrich Hertz Inst, Berlin, Germany
[23] Berlin Inst Fdn Learning & Data BIFOLD, Berlin, Germany
[24] Univ Liechtenstein, Dept Informat Syst & Comp Sci, Vaduz, Liechtenstein
[25] Univ Bayreuth, Dept Philosophy, Bayreuth, Germany
[26] Saarland Univ, Ctr Perspicuous Comp, Saarbrucken, Germany
[27] Univ Glasgow, Sch Comp Sci, Glasgow, Scotland
关键词
Explainable artificial intelligence; XAI; Interpretability; Manifesto; Open challenges; Interdisciplinarity; Ethical AI; Large language models; Trustworthy AI; Responsible AI; Generative AI; Multi-faceted explanations; -based; Causality; Actionable XAI; Falsifiability; BLACK-BOX; AI; EXPLANATIONS; CLASSIFICATION; REPRESENTATION; ARGUMENTATION; TAXONOMY; LEARNER; SYSTEMS;
D O I
10.1016/j.inffus.2024.102301
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Understanding black box models has become paramount as systems based on opaque Artificial Intelligence (AI) continue to flourish in diverse real-world applications. In response, Explainable AI (XAI) has emerged as a field of research with practical and ethical benefits across various domains. This paper highlights the advancements in XAI and its application in real-world scenarios and addresses the ongoing challenges within XAI, emphasizing the need for broader perspectives and collaborative efforts. We bring together experts from diverse fields to identify open problems, striving to synchronize research agendas and accelerate XAI in practical applications. By fostering collaborative discussion and interdisciplinary cooperation, we aim to propel XAI forward, contributing to its continued success. We aim to develop a comprehensive proposal for advancing XAI. To achieve this goal, we present a manifesto of 28 open problems categorized into nine categories. These challenges encapsulate the complexities and nuances of XAI and offer a road map for future research. For each problem, we provide promising research directions in the hope of harnessing the collective intelligence of interested stakeholders.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Explainable Artificial Intelligence (XAI): Concepts and Challenges in Healthcare
    Hulsen, Tim
    AI, 2023, 4 (03) : 652 - 666
  • [2] Current Challenges and Future Research Directions in Multimodal Explainable Artificial Intelligence
    Rodis, Nikolaos
    Sardianos, Christos
    Papadopoulos, Georgios Th.
    ERCIM NEWS, 2023, (134):
  • [3] What do we want from Explainable Artificial Intelligence (XAI)? - A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research
    Langer, Markus
    Oster, Daniel
    Speith, Timo
    Hermanns, Holger
    Kaestner, Lena
    Schmidt, Eva
    Sesing, Andreas
    Baum, Kevin
    ARTIFICIAL INTELLIGENCE, 2021, 296
  • [4] Explainable Artificial Intelligence (XAI) in Insurance
    Owens, Emer
    Sheehan, Barry
    Mullins, Martin
    Cunneen, Martin
    Ressel, Juliane
    Castignani, German
    RISKS, 2022, 10 (12)
  • [5] Explainable Artificial Intelligence (XAI) in auditing
    Zhang, Chanyuan
    Cho, Soohyun
    Vasarhelyi, Miklos
    INTERNATIONAL JOURNAL OF ACCOUNTING INFORMATION SYSTEMS, 2022, 46
  • [6] XAI-Explainable artificial intelligence
    Gunning, David
    Stefik, Mark
    Choi, Jaesik
    Miller, Timothy
    Stumpf, Simone
    Yang, Guang-Zhong
    SCIENCE ROBOTICS, 2019, 4 (37)
  • [7] A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI
    Tjoa, Erico
    Guan, Cuntai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (11) : 4793 - 4813
  • [8] Explainable artificial intelligence (XAI): Precepts, models, and opportunities for research in construction
    Love, Peter E. D.
    Fang, Weili
    Matthews, Jane
    Porter, Stuart
    Luo, Hanbin
    Ding, Lieyun
    ADVANCED ENGINEERING INFORMATICS, 2023, 57
  • [9] A Review of Trustworthy and Explainable Artificial Intelligence (XAI)
    Chamola, Vinay
    Hassija, Vikas
    Sulthana, A. Razia
    Ghosh, Debshishu
    Dhingra, Divyansh
    Sikdar, Biplab
    IEEE ACCESS, 2023, 11 : 78994 - 79015
  • [10] The Pragmatic Turn in Explainable Artificial Intelligence (XAI)
    Paez, Andres
    MINDS AND MACHINES, 2019, 29 (03) : 441 - 459