Rearrangements and the Monge-Ampère equations

被引:0
|
作者
Blocki, Zbigniew [1 ]
机构
[1] Uniwersytet Jagiellonski, Inst Matematyki, Lojasiewicza 6, PL-30348 Krakow, Poland
基金
中国国家自然科学基金;
关键词
Symmetrization; Monge-Amp & egrave; re equations; Convex functions; Subharmonic functions; Plurisubharmonic functions; Isoperimetric inequalities; COMPLEX MONGE-AMPERE; DIRICHLET PROBLEM; SYMMETRIZATION;
D O I
10.1007/s00209-024-03557-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the direct counterpart of the Talenti symmetrization estimate for the Laplacian does not hold neither for the complex nor real Monge-Amp & egrave;re equations. We also use this Talenti result to improve some known estimates for subharmonic functions in C,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}},$$\end{document} where the constant depends on the area of the domain, instead of the diameter.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Subsolution theorem and the Dirichlet problem for the quaternionic Monge–Ampère equation
    Dongrui Wan
    Mathematische Zeitschrift, 2020, 296 : 1673 - 1690
  • [42] The Dirichlet Problem for the Complex Monge–Ampère Operator on Strictly Plurifinely Pseudoconvex Domains
    Nguyen Xuan Hong
    Pham Thi Lieu
    Complex Analysis and Operator Theory, 2021, 15
  • [43] A sharp global estimate and an overdetermined problem for Monge-Ampere type equations
    Mohammed, Ahmed
    Porru, Giovanni
    ADVANCED NONLINEAR STUDIES, 2022, 22 (01) : 1 - 14
  • [44] Complex Monge-Ampere Equations
    Phong, D. H.
    Song, Jian
    Sturm, Jacob
    IN MEMORY OF C.C. HSIUNG: LECTURES GIVEN AT THE JDG SYMPOSIUM, LEHIGH UNIVERSITY, JUNE 2010, 2012, 17 : 327 - +
  • [45] New isoperimetric estimates for solutions to Monge-Ampere equations
    Brandolini, B.
    Nitsch, C.
    Trombetti, C.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (04): : 1265 - 1275
  • [46] Complex Monge-Ampere equations and totally real submanifolds
    Guan, Bo
    Li, Qun
    ADVANCES IN MATHEMATICS, 2010, 225 (03) : 1185 - 1223
  • [47] Complex Monge-Ampere equations for plurifinely plurisubharmonic functions
    Hong, Nguyen Xuan
    Van Can, Hoang
    Lien, Nguyen Thi
    Lieu, Pham Thi
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2023, 34 (03): : 588 - 605
  • [48] Degenerate Complex Monge-Ampe`re Equations with Non-Kahler Forms in Bounded Domains
    Salouf, Mohammed
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2025, 74 (01) : 131 - 156
  • [49] ON THE REGULARITY OF THE COMPLEX MONGE-AMPERE EQUATIONS
    He, Weiyong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (05) : 1719 - 1727
  • [50] Comparison results for Monge-Ampere type equations with lower order terms
    Brandolini, B
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2003, 10 (04): : 455 - 468