Implicit-explicit multirate infinitesimal stage-restart methods

被引:1
作者
Fish, Alex C. [1 ]
Reynolds, Daniel R. [1 ]
Roberts, Steven B. [2 ]
机构
[1] Southern Methodist Univ, Dept Math, Dallas, TX 75205 USA
[2] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA
关键词
Multirate time integration; Initial-value problems; Implicit-explicit methods; RUNGE-KUTTA METHODS; HIGH-ORDER; SCHEMES; SYSTEMS;
D O I
10.1016/j.cam.2023.115534
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Implicit-Explicit (IMEX) methods are flexible numerical time integration methods which solve an initial-value problem (IVP) that is split into stiff and nonstiff processes with the goal of lower computational costs than a purely implicit or explicit approach. A complementary form of flexible IVP solvers are multirate infinitesimal methods for problems split into fast- and slow-changing dynamics, that solve a multirate IVP by evolving a sequence of "fast'' IVPs using any suitably accurate algorithm. This article introduces a new class of high-order implicit-explicit multirate methods that are designed for multirate IVPs in which the slow-changing dynamics are further split in an IMEX fashion. This new class, which we call implicit-explicit multirate infinitesimal stagerestart (IMEX-MRI-SR), both improves upon the previous implicit-explicit multirate infinitesimal generalized-structure additive Runge Kutta (IMEX-MRI-GARK) methods by allowing for far easier creation of new embedded methods, and extends multirate exponential Runge Kutta (MERK) methods by allowing the fast-changing dynamics to be nonlinear and the methods to be implicit. We leverage GARK theory to derive conditions for orders of accuracy up to four, and we provide second- and third-order accurate example methods, which are the first known embedded MRI methods with IMEX structure. We then perform numerical simulations demonstrating convergence rates and computational performance in both fixed-step and adaptive-step settings. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:23
相关论文
共 34 条
[1]   Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations [J].
Ascher, UM ;
Ruuth, SJ ;
Spiteri, RJ .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :151-167
[2]  
Bogacki P., 1989, Applied Mathematics Letters, V2, P321, DOI [DOI 10.1016/0893-9659(89)90079-7, 10.1016/0893-9659(89)90079-7]
[3]   Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations [J].
Calvo, MP ;
de Frutos, J ;
Novo, J .
APPLIED NUMERICAL MATHEMATICS, 2001, 37 (04) :535-549
[4]   IMPLICIT-EXPLICIT MULTIRATE INFINITESIMAL GARK METHODS [J].
Chinomona, Rujeko ;
Reynolds, Daniel R. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05) :A3082-A3113
[5]  
COOPER GJ, 1983, MATH COMPUT, V40, P207, DOI 10.1090/S0025-5718-1983-0679441-1
[6]  
COOPER GJ, 1980, MATH COMPUT, V35, P1159, DOI 10.1090/S0025-5718-1980-0583492-2
[7]  
Ernst H., 1996, Solving ordinary differential equations II: Stiff and differentialalgebraic problems
[8]   An a posteriori - A priori analysis of multiscale operator splitting [J].
Estep, D. ;
Ginting, V. ;
Ropp, D. ;
Shadid, J. N. ;
Tavener, S. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) :1116-1146
[9]   ADAPTIVE TIME STEP CONTROL FOR MULTIRATE INFINITESIMAL METHODS [J].
Fish, Alex C. ;
Reynolds, Daniel R. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (02) :A958-A984
[10]   Nth-order operator splitting schemes and nonreversible systems [J].
Goldman, D ;
Kaper, TJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) :349-367