Energy-Efficient Data Collection in Molecular Nanonetworks: An Optimization Framework

被引:1
作者
Panahi, Farzad [1 ]
Panahi, Fereidoun [1 ]
机构
[1] Univ Kurdistan, Sanandaj 66614, Iran
关键词
Optimization; Energy efficiency; Symbols; Nanobioscience; Resource management; Transmitters; Receivers; Data collection; energy efficiency; Internet of bio-nano things; molecular communication; optimization problem;
D O I
10.1109/LSP.2024.3389608
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Molecular communication (MC), which utilizes molecules to transmit data via diffusion channels, is a prominent system in nanonetworks. In particular, Data-collection (DC) scenarios are a challenging area of research that remains open for further investigation. In this letter, we focus on optimizing the energy efficiency (EE) of a molecular DC nanonetwork comprising a mobile nanorobot (NR) and energy-constrained nanosensors (NSs), taking into account the constraints on the molecular concentration, data rate, and available molecular resources. The defined optimization problem is a nonlinear fractional program that is difficult to solve. To determine the optimal solution, we use Dinkelbach's approach and Lagrangian analysis. The simulation results demonstrate the promising performance of the proposed framework.
引用
收藏
页码:1194 / 1198
页数:5
相关论文
共 20 条
[1]   Analysis and Design of Multi-Hop Diffusion-Based Molecular Communication Networks [J].
Ahmadzadeh, Arman ;
Noel, Adam ;
Schober, Robert .
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2015, 1 (02) :144-157
[2]   THE INTERNET OF BIO-NANOTHINGS [J].
Akyildiz, I. F. ;
Pierobon, M. ;
Balasubramaniam, S. ;
Koucheryavy, Y. .
IEEE COMMUNICATIONS MAGAZINE, 2015, 53 :32-40
[3]   Energy Efficiency Optimization for MIMO Visible Light Communication Systems [J].
An, Liang ;
Shen, Hong ;
Wang, Jiaheng ;
Zeng, Yumin ;
Ran, Rong .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (04) :452-456
[4]   Multi-Hop Genetic-Algorithm-Optimized Routing Technique in Diffusion-Based Molecular Communication [J].
Ansari, Sam ;
Alnajjar, Khawla A. .
IEEE ACCESS, 2023, 11 :22689-22704
[5]   Energy efficiency analysis of multi-hop mobile diffusive molecular communication [J].
Cheng, Zhen ;
Tu, Yuchun ;
Xia, Ming ;
Chi, Kaikai .
NANO COMMUNICATION NETWORKS, 2020, 26
[6]   Enabling Energy Efficient Molecular Communication via Molecule Energy Transfer [J].
Deng, Yansha ;
Guo, Weisi ;
Noel, Adam ;
Nallanathan, Arumugam ;
Elkashlan, Maged .
IEEE COMMUNICATIONS LETTERS, 2017, 21 (02) :254-257
[7]   Symbol-by-Symbol Maximum Likelihood Detection for Cooperative Molecular Communication [J].
Fang, Yuting ;
Noel, Adam ;
Yang, Nan ;
Eckford, Andrew W. ;
Kennedy, Rodney A. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (07) :4885-4899
[8]  
Gohari Amin., 2016, IEEE Transactions on Molecular, Biological and Multi-Scale Communications, V2, P120, DOI [10.1109/TMBMC.2016.2640284, DOI 10.1109/TMBMC.2016.2640284]
[9]   Coding in Diffusion-Based Molecular Nanonetworks: A Comprehensive Survey [J].
Hofmann, Pit ;
Cabrera, Juan A. ;
Bassoli, Riccardo ;
Reisslein, Martin ;
Fitzek, Frank H. P. .
IEEE ACCESS, 2023, 11 :16411-16465
[10]   A Molecular Communication-Based Simultaneous Targeted-Drug Delivery Scheme [J].
Islam, Tania ;
Shitiri, Ethungshan ;
Cho, Ho-Shin .
IEEE ACCESS, 2021, 9 :96658-96670