A SHARPENED STRICHARTZ INEQUALITY FOR THE WAVE EQUATION

被引:2
作者
Negro, Giuseppe
机构
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2023年 / 56卷 / 06期
关键词
MAXIMIZERS; NORM;
D O I
10.24033/asens.2564
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We disprove a conjecture of Foschi, regarding extremizers for the Strichartz inequality with data in the Sobolev space (H) over dot(1/2) x (H) over dot(-1/2)(R-d), for even d >= 2. On the other hand, we provide evidence to support the conjecture in odd dimensions and refine his sharp inequality in R1+3, adding a term proportional to the distance of the initial data from the set of extremizers. The proofs use the conformal compactification of the Minkowski space-time given by the Penrose transform.
引用
收藏
页码:1685 / 1708
页数:24
相关论文
共 23 条
[1]  
Aubin T., 1976, J. Differential Geom., V11, P573
[2]   High frequency approximation of solutions to critical nonlinear wave equations [J].
Bahouri, H ;
Gérard, P .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) :131-175
[3]   A Conjecture Regarding Optimal Strichartz Estimates for the Wave Equation [J].
Bez, Neal ;
Jeavons, Chris ;
Ozawa, Tohru ;
Saito, Hiroki .
NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, :293-299
[4]   A sharp Strichartz estimate for the wave equation with data in the energy space [J].
Bez, Neal ;
Rogers, Keith M. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (03) :805-823
[5]   A NOTE ON THE SOBOLEV INEQUALITY [J].
BIANCHI, G ;
EGNELL, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :18-24
[6]   SOBOLEV INEQUALITIES WITH REMAINDER TERMS [J].
BREZIS, H ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (01) :73-86
[7]   Remainder Terms in the Fractional Sobolev Inequality [J].
Chen, Shibing ;
Frank, Rupert L. ;
Weth, Tobias .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (04) :1381-1397
[8]   Functional Inequalities: Nonlinear Flows and Entropy Methods as a Tool for Obtaining Sharp and Constructive Results [J].
Dolbeault, Jean .
MILAN JOURNAL OF MATHEMATICS, 2021, 89 (02) :355-386
[9]   Maximizers for the Strichartz norm for small solutions of mass-critical NLS [J].
Duyckaerts, Thomas ;
Merle, Frank ;
Roudenko, Svetlana .
ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2011, 10 (02) :427-476
[10]  
Foschi D, 2007, J EUR MATH SOC, V9, P739