共 50 条
The potential role of nitric oxide in the anticonvulsant effects of betulin in pentylenetetrazole (PTZ)-induced seizures in mice
被引:1
|作者:
Eghbali, Fatemeh
[1
]
Dehkordi, Hossein Tahmasebi
[1
]
Amini-Khoei, Hossein
[1
]
Lorigooini, Zahra
[1
]
Rahimi-Madiseh, Mohammad
[1
]
机构:
[1] Shahrekord Univ Med Sci, Basic Hlth Sci Inst, Med Plants Res Ctr, Shahrekord, Iran
来源:
IBRO NEUROSCIENCE REPORTS
|
2024年
/
16卷
关键词:
Betulin;
Nitric oxide;
Seizures;
Oxidative stress;
EPILEPSY;
DERIVATIVES;
EXPRESSION;
MECHANISM;
INOS;
D O I:
10.1016/j.ibneur.2024.04.003
中图分类号:
Q189 [神经科学];
学科分类号:
071006 ;
摘要:
Epilepsy poses a significant challenge, especially for drug -resistant cases, necessitating novel treatment avenues. This study explores the potential interplay between nitric oxide (NO) and the anticonvulsant effects of betulin, a triterpene with promising neuroprotective properties. While betulin exhibits anticonvulsant effects, the specific involvement of NO remains inadequately understood, constituting a pivotal gap in current knowledge. One hundred NMRI mice were randomly assigned to diverse treatment groups, with seizures induced by pentylenetetrazol (PTZ). Parameters such as seizure threshold, nitrite levels, total antioxidant capacity (TAC), malondialdehyde (MDA) levels, and iNOS/nNOS gene expressions were assessed. Betulin significantly increased seizure thresholds and mitigated PTZ-induced NO levels. These findings suggest a potential modulation of NOrelated pathways, emphasizing betulin ' s anti-inflammatory and antioxidant attributes. The study sheds light on betulin ' s multifaceted impact on oxidative stress, NO regulation, and iNOS/nNOS gene expressions. The ability of betulin to suppress iNOS/nNOS gene expressions, leading to reduce NO production, underscores its potential as an anticonvulsant.
引用
收藏
页码:527 / 534
页数:8
相关论文