Meromorphic Solutions of a Certain Type of Nonlinear Differential Equations

被引:0
作者
Feng, Yan-Yan [1 ]
Chen, Jun-Fan [1 ]
机构
[1] Fujian Normal Univ, Sch Math & Stat, Fuzhou 350117, Peoples R China
关键词
Nevanlinna theory; Meromorphic solutions; Nonlinear differential equations; Wronskian determinants; Zeros; STRUCTURED MONOTONE INCLUSIONS; BACKWARD SPLITTING METHOD; ALGORITHM; COMPOSITE; SUM;
D O I
10.1007/s40306-024-00539-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, using Nevanlinna theory and linear algebra, we characterize transcendental meromorphic solutions of nonlinear differential equation of the form fn+Qd(z,f)=& sum;i=1lpi(z)e alpha i(z),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f<^>n+Q_d(z,f)=\sum _{i=1}<^>{l}p_{i}(z)e<^>{\alpha _{i}(z)}, \end{aligned}$$\end{document}where l >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l\ge 2$$\end{document}, n >= l+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge l+2$$\end{document} are integers, f(z) is a meromorphic function, Qd(z,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_d(z,f)$$\end{document} is a differential polynomial in f(z) of degree d <= n-(l+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le n-(l+1)$$\end{document} with rational functions as its coefficients, p1(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{1}(z)$$\end{document}, p2(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{2}(z)$$\end{document}, & ctdot;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dots $$\end{document}, pl(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{l}(z)$$\end{document} are non-vanishing rational functions and alpha 1(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{1}(z)$$\end{document}, alpha 2(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{2}(z)$$\end{document}, & ctdot;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ $\dots $$\end{document}, alpha l(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{l}(z)$$\end{document} are nonconstant polynomials such that alpha 1 '(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{1}<^>\prime (z)$$\end{document}, alpha 2 '(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{2}<^>\prime (z)$$\end{document}, & ctdot;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dots $$\end{document}, alpha l '(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{l}<^>\prime (z)$$\end{document} are distinct. Further, we give the necessary conditions for the existence of meromorphic solutions of the above equation, and supply the example to demonstrate the sharpness of the condition of the obtained theorem.
引用
收藏
页码:173 / 186
页数:14
相关论文
共 19 条
[1]  
Chen JF, 2020, B KOREAN MATH SOC, V57, P1061
[2]  
CLUNIE J, 1962, J LOND MATH SOC, V37, P17
[3]  
Conway JB., 1995, Functions of One Complex Variable II, V159, pxvi+394
[4]  
Gross F., 1972, Factorization of meromorphic functions
[5]  
Hayman W. K., 1964, Meromorphic Functions
[6]   On meromorphic solutions of non-linear differential equations of Tumura-Clunie type [J].
Heittokangas, J. ;
Latreuch, Z. ;
Wang, J. ;
Zemirni, M. A. .
MATHEMATISCHE NACHRICHTEN, 2021, 294 (04) :748-773
[7]  
Laine I., 1993, Nevanlinna Theory and Complex Differential Equations, DOI [10.1515/9783110863147, DOI 10.1515/9783110863147]
[8]   On the nonexistence of entire solutions of certain type of nonlinear differential equations [J].
Li, Ping ;
Yang, Chung-Chun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (02) :827-835
[9]   Entire solutions of certain type of differential equations II [J].
Li, Ping .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (01) :310-319
[10]   ON MEROMORPHIC SOLUTIONS OF CERTAIN TYPE OF NON-LINEAR DIFFERENTIAL EQUATIONS [J].
Liao, Liang-Wen ;
Yang, Chung-Chun ;
Zhang, Jian-Jun .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (02) :581-593