A Composite Control Framework of Safety Satisfaction and Uncertainties Compensation for Constrained Time-Varying Nonlinear MIMO Systems

被引:8
作者
Wang, Haijing [1 ]
Peng, Jinzhu [1 ]
Zhang, Fangfang [1 ]
Wang, Yaonan [1 ,2 ,3 ]
机构
[1] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Henan, Peoples R China
[2] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[3] Hunan Univ, Natl Engn Lab Robot Visual Percept & Control, Changsha 410082, Hunan, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2023年 / 53卷 / 12期
基金
中国国家自然科学基金;
关键词
Safety; Uncertainty; Observers; Time-varying systems; MIMO communication; Nonlinear dynamical systems; Compounds; Control barrier functions (CBFs); extended state observer (ESO); nonlinear systems; quadratic program (QP); safety control; CONTROL BARRIER FUNCTIONS; TRACKING;
D O I
10.1109/TSMC.2023.3301881
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we propose a composite control framework for time-varying nonlinear multiple-input-multiple-output (MIMO) systems with safety constraints and unknown dynamics. The control framework combines control barrier functions (CBFs) and high-order CBFs (HoCBFs) with an extended state observer (ESO) to handle arbitrary relative-degree constraints in the presence of system uncertainties and output measurements only. Then, the ESO-CBF/HoCBF-based safety control schemes are obtained by solving quadratic programs (QPs) to ensure the safety of closed-loop control systems. Consequently, the safety satisfaction and uncertainties compensation objectives can be achieved simultaneously. Finally, simulations and experiments are conducted to verify the effectiveness of the proposed safety control schemes.
引用
收藏
页码:7864 / 7875
页数:12
相关论文
共 43 条
[1]   Disturbance Observers for Robust Safety-Critical Control With Control Barrier Functions [J].
Alan, Anil ;
Molnar, Tamas G. ;
Das, Ersin ;
Ames, Aaron D. ;
Orosz, Gabor .
IEEE CONTROL SYSTEMS LETTERS, 2023, 7 :1123-1128
[2]  
Ames AD, 2019, 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), P3420, DOI [10.23919/ecc.2019.8796030, 10.23919/ECC.2019.8796030]
[3]   Control Barrier Function Based Quadratic Programs for Safety Critical Systems [J].
Ames, Aaron D. ;
Xu, Xiangru ;
Grizzle, Jessy W. ;
Tabuada, Paulo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) :3861-3876
[4]  
Blanchini Franco, 2015, Systems & Control: Foundations & Applications, V2nd
[5]   Control barrier functions for stochastic systems [J].
Clark, Andrew .
AUTOMATICA, 2021, 130
[6]   Robust Safe Control Synthesis with Disturbance Observer-Based Control Barrier Functions [J].
Das, Ersin ;
Murray, Richard M. .
2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, :5566-5573
[7]   Vision-Based Virtual Impedance Control for Robotic System Without Prespecified Task Trajectory [J].
Ding, Shuai ;
Peng, Jinzhu ;
Xin, Jianbin ;
Zhang, Hui ;
Wang, Yaonan .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (06) :6046-6056
[8]   Multi-agent system motion planning under temporal logic specifications and control barrier function [J].
Huang, Xinyuan ;
Li, Li ;
Chen, Jie .
CONTROL THEORY AND TECHNOLOGY, 2020, 18 (03) :269-278
[9]   Stability Control of Autonomous Ground Vehicles Using Control-Dependent Barrier Functions [J].
Huang, Yiwen ;
Yong, Sze Zheng ;
Chen, Yan .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2021, 6 (04) :699-710
[10]   Robust control barrier functions for constrained stabilization of nonlinear systems [J].
Jankovic, Mrdjan .
AUTOMATICA, 2018, 96 :359-367