Interface interaction mediated surface plasmon resonance enhancement promoted visible-light-driven CO2 reduction with water

被引:1
作者
Wang, Huiming [1 ]
Xu, Sheng [1 ]
Ni, Baoxin [1 ]
Xu, Jinting [1 ]
Solari, Gregory A. [3 ]
Gong, Shuaiqi [1 ]
Min, Yulin [1 ,2 ]
机构
[1] Shanghai Univ Elect Power, Shanghai Key Lab Mat Protect & Adv Mat Elect Powe, Shanghai 200090, Peoples R China
[2] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China
[3] Univ Leicester, Dept Chem, Univ Rd, Leicester LE1 7RH, Leics, England
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2024年 / 355卷
基金
中国国家自然科学基金;
关键词
TiO2; TiN; LSPR effect; Built-in electric field; Photocatalytic CO2 reduction; NANOPARTICLES; CONVERSION; SOLAR;
D O I
10.1016/j.apcatb.2024.124141
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The conversion of carbon dioxide (CO2) into fuel using solar energy holds significant promise. However, the inefficient use of light and poor production activity have hindered its development. Here, we propose a simple in situ annealing oxidation method by coating a layer of TiO2 outside TiN, a material with a favorable price and localized surface plasmon resonance (LSPR) effect, to create an L-TiNO composite. The yield of CO over L-TiNO (50.8 mu mol g(-1) h(-1)) is 56.4 times that over TiO2 (0.9 mu mol g(-1) h(-1)) under visible light irradiation in pure aqueous environment, with a selectivity of 95.98%. In-situ Fourier transform infrared (FTIR) measurements reflect the CO2-COOH*-CO conversion route happening on L-TiNO. Characterizations like the Kelvin probe force microscopy (KPFM) technique confirm the generation of built-in electric field, which facilitates efficient carrier separation and migration. Density functional theory (DFT) calculations support that L-TiNO with LSPR effect alters the shape of absorbed CO2 to facilitate generation COOH* via forming hydroxyl end group (Ti-OH) and promotes CO* desorption to CO(g). This work provides valuable insights into the coupling of plasmonic materials with semiconductors to achieve efficient solar energy utilization.
引用
收藏
页数:11
相关论文
共 43 条
  • [1] Near-Infrared-Responsive Photocatalytic CO2 Conversion via In Situ Generated Co3O4/Cu2O
    Bai, Shengjie
    Jing, Wenhao
    He, Guiwei
    Liao, Chen
    Wang, Feng
    Liu, Ya
    Guo, Liejin
    [J]. ACS NANO, 2023, 17 (11) : 10976 - 10986
  • [2] Towards dense single-atom catalysts for future automotive applications
    Beniya, Atsushi
    Higashi, Shougo
    [J]. NATURE CATALYSIS, 2019, 2 (07) : 590 - 602
  • [3] Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/nnano.2014.311, 10.1038/NNANO.2014.311]
  • [4] Effective electron mean free path in TiN(001)
    Chawla, J. S.
    Zhang, X. Y.
    Gall, D.
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 113 (06)
  • [5] Gold nanorods and their plasmonic properties
    Chen, Huanjun
    Shao, Lei
    Li, Qian
    Wang, Jianfang
    [J]. CHEMICAL SOCIETY REVIEWS, 2013, 42 (07) : 2679 - 2724
  • [6] Optical properties and plasmon resonances of titanium nitride nanostructures
    Cortie, M. B.
    Giddings, J.
    Dowd, A.
    [J]. NANOTECHNOLOGY, 2010, 21 (11)
  • [7] INFRARED DETECTION OF THE FORMYL RADICAL HCO
    EWING, GE
    THOMPSON, WE
    PIMENTEL, GC
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1960, 32 (03) : 927 - 932
  • [8] Characterisation of oxygen defects and nitrogen impurities in TiO2 photocatalysts using variable-temperature X-ray powder diffraction
    Foo, Christopher
    Li, Yiyang
    Lebedev, Konstantin
    Chen, Tianyi
    Day, Sarah
    Tang, Chiu
    Tsang, Shik Chi Edman
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [9] TiO2 nanoparticles prepared using an aqueous peroxotitanate solutions
    Gao, YF
    Masuda, Y
    Seo, WS
    Ohta, H
    Koumoto, K
    [J]. CERAMICS INTERNATIONAL, 2004, 30 (07) : 1365 - 1368
  • [10] Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels
    Gong, Eunhee
    Ali, Shahzad
    Hiragond, Chaitanya B.
    Kim, Hong Soo
    Powar, Niket S.
    Kim, Dongyun
    Kim, Hwapyong
    In, Su-Il
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (03) : 880 - 937