X-Ray Dark-Field Signal Reduction Due to Hardening of the Visibility Spectrum

被引:1
作者
De Marco, Fabio [1 ,2 ]
Andrejewski, Jana [1 ,2 ,3 ]
Urban, Theresa [1 ,2 ]
Willer, Konstantin [1 ,2 ,4 ]
Gromann, Lukas [1 ,2 ,5 ]
Koehler, Thomas [6 ,7 ]
Maack, Hanns-Ingo [8 ]
Herzen, Julia [1 ]
Pfeiffer, Franz [1 ,2 ,7 ,9 ]
机构
[1] Tech Univ Munich, Munich Inst Biomed Engn, Chair Biomed Phys, Dept Phys, D-85748 Garching, Germany
[2] Univ Trieste, Dept Phys, I-32127 Trieste, Italy
[3] Hamamatsu Photon Deutschland GmbH, D-82211 Herrsching Am Ammersee, Germany
[4] Deloitte Consulting GmbH, D-81669 Munich, Germany
[5] Rodenstock GmbH, D-80687 Munich, Germany
[6] Philips Res, D-22335 Hamburg, Germany
[7] Tech Univ Munich, Inst Adv Study, D-85748 Garching, Germany
[8] Philips Med Syst DMC GmbH, D-22335 Hamburg, Germany
[9] Tech Univ Munich, Dept Diagnost & Intervent Radiol, Klinikum Rechts Isar, D-81675 Munich, Germany
基金
欧洲研究理事会;
关键词
X-ray imaging; Gratings; Attenuation; Imaging; Photonics; Aluminum; Physics; Quantification and estimation; tissue modeling; computed tomography; NEUTRON-SCATTERING; CONTRAST;
D O I
10.1109/TMI.2023.3337994
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
X-ray dark-field imaging enables a spatially-resolved visualization of ultra-small-angle X-ray scattering. Using phantom measurements, we demonstrate that a material's effective dark-field signal may be reduced by modification of the visibility spectrum by other dark-field-active objects in the beam. This is the dark-field equivalent of conventional beam-hardening, and is distinct from related, known effects, where the dark-field signal is modified by attenuation or phase shifts. We present a theoretical model for this group of effects and verify it by comparison to the measurements. These findings have significant implications for the interpretation of dark-field signal strength in polychromatic measurements.
引用
收藏
页码:1422 / 1433
页数:12
相关论文
共 52 条
[1]   Analysis of spin-echo small-angle neutron scattering measurements [J].
Andersson, Robert ;
van Heijkamp, Leon F. ;
de Schepper, Ignatz M. ;
Bouwman, Wim G. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2008, 41 :868-885
[2]  
Andrejewski J. K. L., 2021, Ph.D.dissertation,
[3]   Retrieval of 3D information in X-ray dark-field imaging with a large field of view [J].
Andrejewski, Jana ;
De Marco, Fabio ;
Willer, Konstantin ;
Noichl, Wolfgang ;
Urban, Theresa ;
Frank, Manuela ;
Gustschin, Alex ;
Meyer, Pascal ;
Koehler, Thomas ;
Pfeiffer, Franz ;
Herzen, Julia .
SCIENTIFIC REPORTS, 2021, 11 (01)
[4]  
[Anonymous], Report 78: Catalogue of Diagnostic X-Ray Spectra and Other Data, V2
[5]   Quantitative x-ray dark-field computed tomography [J].
Bech, M. ;
Bunk, O. ;
Donath, T. ;
Feidenhans'l, R. ;
David, C. ;
Pfeiffer, F. .
PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (18) :5529-5539
[6]  
Behling R., 1990, Medicamundi, V35, P57
[7]   X-ray phase-contrast imaging: from pre-clinical applications towards clinics [J].
Bravin, Alberto ;
Coan, Paola ;
Suortti, Pekka .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (01) :R1-R35
[8]   Nanovoid characterization of nominally pure aluminium using synchrotron small angle X-ray Scattering (SAXS) methods [J].
Chaudhuri, A. ;
Singh, M. A. ;
Diak, B. J. ;
Cuoppolo, C. ;
Woll, A. R. .
PHILOSOPHICAL MAGAZINE, 2013, 93 (35) :4392-4411
[9]   Differential x-ray phase contrast imaging using a shearing interferometer [J].
David, C ;
Nöhammer, B ;
Solak, HH ;
Ziegler, E .
APPLIED PHYSICS LETTERS, 2002, 81 (17) :3287-3289
[10]   Detective quantum efficiency of the Medipix pixel detector [J].
Davidson, DW ;
Watt, J ;
Tlustos, L ;
Mikulec, B ;
Campbell, M ;
Mathieson, K ;
O'Shea, V ;
Smith, KM ;
Rahman, M .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2003, 50 (05) :1659-1663