Prediction of hepatic metastasis in esophageal cancer based on machine learning

被引:3
作者
Wan, Jun [1 ]
Zeng, Yukai [2 ]
机构
[1] Yangtze Univ, Dept Emergency Surg, Jingzhou Hosp, Jingzhou, Peoples R China
[2] Jilin Univ, Dept Thorac Surg, China Japan Union Hosp, 126 Xiantai St, Changchun, Jilin, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Hepatic metastasis; Esophageal cancer; Machine learning; Online calculator;
D O I
10.1038/s41598-024-63213-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study aimed to establish a machine learning (ML) model for predicting hepatic metastasis in esophageal cancer. We retrospectively analyzed patients with esophageal cancer recorded in the Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2020. We identified 11 indicators associated with the risk of liver metastasis through univariate and multivariate logistic regression. Subsequently, these indicators were incorporated into six ML classifiers to build corresponding predictive models. The performance of these models was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. A total of 17,800 patients diagnosed with esophageal cancer were included in this study. Age, primary site, histology, tumor grade, T stage, N stage, surgical intervention, radiotherapy, chemotherapy, bone metastasis, and lung metastasis were independent risk factors for hepatic metastasis in esophageal cancer patients. Among the six models developed, the ML model constructed using the GBM algorithm exhibited the highest performance during internal validation of the dataset, with AUC, accuracy, sensitivity, and specificity of 0.885, 0.868, 0.667, and 0.888, respectively. Based on the GBM algorithm, we developed an accessible web-based prediction tool (accessible at https://project2-dngisws9d7xkygjcvnue8u.streamlit.app/) for predicting the risk of hepatic metastasis in esophageal cancer.
引用
收藏
页数:10
相关论文
共 37 条
[1]   Towards a European health research and innovation cloud (HRIC) [J].
Aarestrup, F. M. ;
Albeyatti, A. ;
Armitage, W. J. ;
Auffray, C. ;
Augello, L. ;
Balling, R. ;
Benhabiles, N. ;
Bertolini, G. ;
Bjaalie, J. G. ;
Black, M. ;
Blomberg, N. ;
Bogaert, P. ;
Bubak, M. ;
Claerhout, B. ;
Clarke, L. ;
De Meulder, B. ;
D'Errico, G. ;
Di Meglio, A. ;
Forgo, N. ;
Gans-Combe, C. ;
Gray, A. E. ;
Gut, I. ;
Gyllenberg, A. ;
Hemmrich-Stanisak, G. ;
Hjorth, L. ;
Ioannidis, Y. ;
Jarmalaite, S. ;
Kel, A. ;
Kherif, F. ;
Korbel, J. O. ;
Larue, C. ;
Laszlo, M. ;
Maas, A. ;
Magalhaes, L. ;
Manneh-Vangramberen, I. ;
Morley-Fletcher, E. ;
Ohmann, C. ;
Oksvold, P. ;
Oxtoby, N. P. ;
Perseil, I. ;
Pezoulas, V. ;
Riess, O. ;
Riper, H. ;
Roca, J. ;
Rosenstiel, P. ;
Sabatier, P. ;
Sanz, F. ;
Tayeb, M. ;
Thomassen, G. ;
Van Bussel, J. .
GENOME MEDICINE, 2020, 12 (01)
[2]   The effect of tumor locations of esophageal cancer on the metastasis to liver or lung [J].
Ai, Dashan ;
Chen, Yun ;
Liu, Qi ;
Deng, Jiaying ;
Zhao, Kuaile .
JOURNAL OF THORACIC DISEASE, 2019, 11 (10) :4205-4210
[3]   Esophageal and Esophagogastric Junction Cancers, Version 2.2019 [J].
Ajani, Jaffer A. ;
D'Amico, Thomas A. ;
Bentrem, David J. ;
Chao, Joseph ;
Corvera, Carlos ;
Das, Prajnan ;
Denlinger, Crystal S. ;
Enzinger, Peter C. ;
Fanta, Paul ;
Farjah, Farhood ;
Gerdes, Hans ;
Gibson, Michael ;
Glasgow, Robert E. ;
Hayman, James A. ;
Hochwald, Steven ;
Hofstetter, Wayne L. ;
Ilson, David H. ;
Jaroszewski, Dawn ;
Johung, Kimberly L. ;
Keswani, Rajesh N. ;
Kleinberg, Lawrence R. ;
Leong, Stephen ;
Ly, Quan P. ;
Matkowskyj, Kristina A. ;
McNamara, Michael ;
Mulcahy, Mary F. ;
Paluri, Ravi K. ;
Park, Haeseong ;
Perry, Kyle A. ;
Pimiento, Jose ;
Poultsides, George A. ;
Roses, Robert ;
Strong, Vivian E. ;
Wiesner, Georgia ;
Willett, Christopher G. ;
Wright, Cameron D. ;
McMillian, Nicole R. ;
Pluchino, Lenora A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2019, 17 (07) :855-883
[4]   Artificial intelligence in medicine: current trends and future possibilities [J].
Buch, Varun H. ;
Ahmed, Irfan ;
Maruthappu, Mahiben .
BRITISH JOURNAL OF GENERAL PRACTICE, 2018, 68 (668) :143-144
[5]   The risk and prognostic factors for brain metastases in esophageal cancer patients: an analysis of the SEER database [J].
Cheng, Shizhao ;
Yang, Lei ;
Dai, Xin ;
Wang, Jing ;
Han, Xingpeng .
BMC CANCER, 2021, 21 (01)
[6]   Machine Learning in Medicine [J].
Deo, Rahul C. .
CIRCULATION, 2015, 132 (20) :1920-1930
[7]   Esophageal cancer: Risk factors, screening and endoscopic treatment in Western and Eastern countries [J].
Domper Arnal, Maria Jose ;
Ferrandez Arenas, Angel ;
Lanas Arbeloa, Angel .
WORLD JOURNAL OF GASTROENTEROLOGY, 2015, 21 (26) :7933-7943
[8]   Prognostic Value of Perineural Invasion in Esophageal and Esophagogastric Junction Carcinoma: A Meta-Analysis [J].
Gao, Aiqin ;
Wang, Linlin ;
Li, Juan ;
Li, Hongyu ;
Han, Yali ;
Ma, Xiaoxia ;
Sun, Yuping .
DISEASE MARKERS, 2016, 2016
[9]   How Machine Learning Will Transform Biomedicine [J].
Goecks, Jeremy ;
Jalili, Vahid ;
Heiser, Laura M. ;
Gray, Joe W. .
CELL, 2020, 181 (01) :92-101
[10]   Application of machine learning approaches to predict the 5-year survival status of patients with esophageal cancer [J].
Gong, Xian ;
Zheng, Bin ;
Xu, Guobing ;
Chen, Hao ;
Chen, Chun .
JOURNAL OF THORACIC DISEASE, 2021, 13 (11) :6240-+