Development and performance evaluation of fully automated deep learning-based models for myocardial segmentation on T1 mapping MRI data

被引:0
作者
Manzke, Mathias [1 ]
Iseke, Simon [1 ]
Boettcher, Benjamin [1 ]
Klemenz, Ann-Christin [1 ]
Weber, Marc-Andre [1 ]
Meinel, Felix G. [1 ]
机构
[1] Univ Med Ctr Rostock, Inst Diagnost & Intervent Radiol, Pediat Radiol & Neuroradiol, Ernst Heydemann Str 6, D-18057 Rostock, Germany
关键词
Deep learning; U-Net; Mapping; Cardiac magnetic resonance imaging; Long axis; Short axis;
D O I
10.1038/s41598-024-69529-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To develop a deep learning-based model capable of segmenting the left ventricular (LV) myocardium on native T1 maps from cardiac MRI in both long-axis and short-axis orientations. Models were trained on native myocardial T1 maps from 50 healthy volunteers and 75 patients using manual segmentation as the reference standard. Based on a U-Net architecture, we systematically optimized the model design using two different training metrics (S & oslash;rensen-Dice coefficient = DSC and Intersection-over-Union = IOU), two different activation functions (ReLU and LeakyReLU) and various numbers of training epochs. Training with DSC metric and a ReLU activation function over 35 epochs achieved the highest overall performance (mean error in T1 10.6 +/- 17.9 ms, mean DSC 0.88 +/- 0.07). Limits of agreement between model results and ground truth were from -35.5 to + 36.1 ms. This was superior to the agreement between two human raters (-34.7 to + 59.1 ms). Segmentation was as accurate for long-axis views (mean error T1: 6.77 +/- 8.3 ms, mean DSC: 0.89 +/- 0.03) as for short-axis images (mean error Delta T1: 11.6 +/- 19.7 ms, mean DSC: 0.88 +/- 0.08). Fully automated segmentation and quantitative analysis of native myocardial T1 maps is possible in both long-axis and short-axis orientations with very high accuracy.
引用
收藏
页数:12
相关论文
共 26 条
[1]   Automatic uncertainty-based quality controlled T1 mapping and ECV analysis from native and post-contrast cardiac T1 mapping images using Bayesian vision transformer [J].
Arega, Tewodros Weldebirhan ;
Bricq, Stephanie ;
Legrand, Francois ;
Jacquier, Alexis ;
Lalande, Alain ;
Meriaudeau, Fabrice .
MEDICAL IMAGE ANALYSIS, 2023, 86
[2]  
Ba J, 2014, ACS SYM SER
[3]   Automated cardiovascular magnetic resonance image analysis with fully convolutional networks [J].
Bai, Wenjia ;
Sinclair, Matthew ;
Tarroni, Giacomo ;
Oktay, Ozan ;
Rajchl, Martin ;
Vaillant, Ghislain ;
Lee, Aaron M. ;
Aung, Nay ;
Lukaschuk, Elena ;
Sanghvi, Mihir M. ;
Zemrak, Filip ;
Fung, Kenneth ;
Paiva, Jose Miguel ;
Carapella, Valentina ;
Kim, Young Jin ;
Suzuki, Hideaki ;
Kainz, Bernhard ;
Matthews, Paul M. ;
Petersen, Steffen E. ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Glocker, Ben ;
Rueckert, Daniel .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20
[4]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[5]   A Deep Learning Segmentation Pipeline for Cardiac T1 Mapping Using MRI Relaxation-based Synthetic Contrast Augmentation [J].
Bhatt, Nitish ;
Ramanan, Venkat ;
Orbach, Ady ;
Biswas, Labonny ;
Ng, Matthew ;
Guo, Fumin ;
Qi, Xiuling ;
Guo, Lancia ;
Jimenez-Juan, Laura ;
Roifman, Idan ;
Wright, Graham A. ;
Ghugre, Nilesh R. .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2022, 4 (06)
[6]   Fully automated quantification of left ventricular volumes and function in cardiac MRI: clinical evaluation of a deep learning-based algorithm [J].
Boettcher, Benjamin ;
Beller, Ebba ;
Busse, Anke ;
Cantre, Daniel ;
Yuecel, Seyrani ;
Oener, Alper ;
Ince, Hueseyin ;
Weber, Marc-Andre ;
Meinel, Felix G. .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2020, 36 (11) :2239-2247
[7]   Global and Regional Test-Retest Reproducibility of Native T1 and T2 Mapping in Cardiac Magnetic Resonance Imaging [J].
Bottcher, Benjamin ;
Lorbeer, Roberto ;
Stocklein, Sophia ;
Beller, Ebba ;
Lang, Cajetan I. ;
Weber, Marc-Andre ;
Meinel, Felix G. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (06) :1763-1772
[8]   A distance map regularized CNN for cardiac cine MR image segmentation [J].
Dangi, Shusil ;
Linte, Cristian A. ;
Yaniv, Ziv .
MEDICAL PHYSICS, 2019, 46 (12) :5637-5651
[9]   Automated analysis of cardiovascular magnetic resonance myocardial native T1 mapping images using fully convolutional neural networks [J].
Fahmy, Ahmed S. ;
El-Rewaidy, Hossam ;
Nezafat, Maryam ;
Nakamori, Shiro ;
Nezafat, Reza .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2019, 21 (1)
[10]   Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks [J].
Farrag, Nadia A. ;
Lochbihler, Aidan ;
White, James A. ;
Ukwatta, Eranga .
MEDICAL PHYSICS, 2021, 48 (01) :215-226