Plasma-assisted ammonia synthesis under mild conditions for hydrogen and electricity storage: Mechanisms, pathways, and application prospects

被引:8
作者
Gong, Feng [1 ]
Jing, Yuhang [1 ]
Xiao, Rui [1 ]
机构
[1] Southeast Univ, Sch Energy & Environm, Key Lab Energy Thermal Convers & Proc Measurement, Minist Educ, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
plasma catalysis; nitrogen fixation; ammonia synthesis; hydrogen storage; catalyst; carbon eutralization; NITROGEN-FIXATION; N-2; CATALYST; DISCHARGE; NANOPARTICLES; CHALLENGES; GENERATION; REDUCTION; ELECTRODE; PRESSURE;
D O I
10.1007/s11708-024-0949-1
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Ammonia, with its high hydrogen storage density of 17.7 wt.% (mass fraction), cleanliness, efficiency, and renewability, presents itself as a promising zero-carbon fuel. However, the traditional Haber-Bosch (H-B) process for ammonia synthesis necessitates high temperature and pressure, resulting in over 420 million tons of carbon dioxide emissions annually, and relies on fossil fuel consumption. In contrast, dielectric barrier discharge (DBD) plasma-assisted ammonia synthesis operates at low temperatures and atmospheric pressures, utilizing nitrogen and hydrogen radicals excited by energetic electrons, offering a potential alternative to the H-B process. This method can be effectively coupled with renewable energy sources (such as solar and wind) for environmentally friendly, distributed, and efficient ammonia production. This review delves into a comprehensive analysis of the low-temperature DBD plasma-assisted ammonia synthesis technology at atmospheric pressure, covering the reaction pathway, mechanism, and catalyst system involved in plasma nitrogen fixation. Drawing from current research, it evaluates the economic feasibility of the DBD plasmaassisted ammonia synthesis technology, analyzes existing dilemmas and challenges, and provides insights and recommendations for the future of nonthermal plasma ammonia processes.
引用
收藏
页码:418 / 435
页数:18
相关论文
共 119 条
[61]   Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products [J].
Liu, Xinyu ;
Elgowainy, Amgad ;
Wang, Michael .
GREEN CHEMISTRY, 2020, 22 (17) :5751-5761
[62]   Fe-doped Co3O4 nanowire strutted 3D pinewood-derived carbon: A highly selective electrocatalyst for ammonia production via nitrate reduction [J].
Liu, Xuwei ;
Liu, Chaozhen ;
He, Xun ;
Cai, Zhengwei ;
Dong, Kai ;
Li, Jun ;
Fan, Xiaoya ;
Xie, Ting ;
Yang, Xiya ;
Luo, Yonglan ;
Zheng, Dongdong ;
Sun, Shengjun ;
Alfaifi, Sulaiman ;
Gong, Feng ;
Sun, Xuping .
NANO RESEARCH, 2024, 17 (04) :2276-2282
[63]   Synergistic Effect of Co-Ni Bimetal on Plasma Catalytic Ammonia Synthesis [J].
Liu, Y. ;
Wang, C-W ;
Xu, X-F ;
Liu, B-W ;
Zhang, G-M ;
Liu, Z-W ;
Chen, Q. ;
Zhang, H-B .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2022, 42 (02) :267-282
[64]   Direct Oxidative Nitrogen Fixation from Air and H2O by a Water Falling Film Dielectric Barrier Discharge Reactor at Ambient Pressure and Temperature [J].
Liu, Zhuo ;
Tian, Yonghui ;
Niu, Guanghui ;
Wang, Xu ;
Duan, Yixiang .
CHEMSUSCHEM, 2021, 14 (06) :1507-1511
[65]   Direct Electrochemical Ammonia Synthesis from Nitric Oxide [J].
Long, Jun ;
Chen, Shiming ;
Zhang, Yunlong ;
Guo, Chenxi ;
Fu, Xiaoyan ;
Deng, Dehui ;
Xiao, Jianping .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (24) :9711-9718
[66]   A Roadmap to the Ammonia Economy [J].
MacFarlane, Douglas R. ;
Cherepanov, Pavel V. ;
Choi, Jaecheol ;
Suryanto, Bryan H. R. ;
Hodgetts, Rebecca Y. ;
Bakker, Jacinta M. ;
Vallana, Federico M. Ferrero ;
Simonov, Alexandr N. .
JOULE, 2020, 4 (06) :1186-1205
[67]   Current Progress in Nitrogen Fixing Plants and Microbiome Research [J].
Mahmud, Kishan ;
Makaju, Shiva ;
Ibrahim, Razi ;
Missaoui, Ali .
PLANTS-BASEL, 2020, 9 (01)
[68]   Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis [J].
Mehta, Prateek ;
Barboun, Patrick ;
Herrera, Francisco A. ;
Kim, Jongsik ;
Rumbach, Paul ;
Go, David B. ;
Hicks, Jason C. ;
Schneider, William F. .
NATURE CATALYSIS, 2018, 1 (04) :269-275
[69]   Elucidation of the role of electric field on low temperature ammonia synthesis using isotopes [J].
Murakami, Kota ;
Manabe, Ryo ;
Nakatsubo, Hideaki ;
Yabe, Tomohiro ;
Ogo, Shuhei ;
Sekine, Yasushi .
CATALYSIS TODAY, 2018, 303 :271-275
[70]   Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes [J].
Mus, Florence ;
Crook, Matthew B. ;
Garcia, Kevin ;
Costas, Amaya Garcia ;
Geddes, Barney A. ;
Kouri, Evangelia D. ;
Paramasivan, Ponraj ;
Ryu, Min-Hyung ;
Oldroyd, Giles E. D. ;
Poole, Philip S. ;
Udvardi, Michael K. ;
Voigt, Christopher A. ;
Ane, Jean-Michel ;
Peters, John W. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2016, 82 (13) :3698-3710