Dissipation-induced collective advantage of a quantum thermal machine

被引:9
作者
Carrega, Matteo [1 ]
Razzoli, Luca [2 ,3 ]
Erdman, Paolo Andrea [4 ]
Cavaliere, Fabio [1 ,5 ]
Benenti, Giuliano [2 ,3 ,6 ]
Sassetti, Maura [1 ,5 ]
机构
[1] CNR, SPIN, Via Dodecaneso 33, I-16146 Genoa, Italy
[2] Univ Insubria, Ctr Nonlinear & Complex Syst, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy
[3] Ist Nazl Fis Nucleare, Sez Milano, Via Celoria 16, I-20133 Milan, Italy
[4] Free Univ Berlin, Dept Math & Comp Sci, Arnimallee 6, D-14195 Berlin, Germany
[5] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy
[6] CNR, Ist Nanosci, NEST, Piazza San Silvestro 12, I-56127 Pisa, Italy
来源
AVS QUANTUM SCIENCE | 2024年 / 6卷 / 02期
关键词
HEAT; OPTIMIZATION; SYNCHRONIZATION; THERMODYNAMICS; ENTANGLEMENT; ENHANCEMENT; SYSTEMS; WORK;
D O I
10.1116/5.0190340
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Do quantum correlations lead to better performance with respect to several different systems working independently? For quantum thermal machines, the question is whether a working medium (WM) made of N constituents exhibits better performance than N independent engines working in parallel. Here, by inspecting a microscopic model with the WM composed by two non-interacting quantum harmonic oscillators, we show that the presence of a common environment can mediate non-trivial correlations in the WM leading to better quantum heat engine performance-maximum power and efficiency-with respect to an independent configuration. Furthermore, this advantage is striking for strong dissipation, a regime in which two independent engines cannot deliver any useful power. Our results show that dissipation can be exploited as a useful resource for quantum thermal engines and are then corroborated by optimization techniques here extended to non-Markovian quantum heat engines. Published under an exclusive license by AIP Publishing
引用
收藏
页数:12
相关论文
共 89 条
[1]   Geometric Optimisation of Quantum Thermodynamic Processes [J].
Abiuso, Paolo ;
Miller, Harry J. D. ;
Perarnau-Llobet, Marti ;
Scandi, Matteo .
ENTROPY, 2020, 22 (10) :1-21
[2]   Optimal Cycles for Low-Dissipation Heat Engines [J].
Abiuso, Paolo ;
Perarnau-Llobet, Marti .
PHYSICAL REVIEW LETTERS, 2020, 124 (11)
[3]   The quantum technologies roadmap: a European community view [J].
Acin, Antonio ;
Bloch, Immanuel ;
Buhrman, Harry ;
Calarco, Tommaso ;
Eichler, Christopher ;
Eisert, Jens ;
Esteve, Daniel ;
Gisin, Nicolas ;
Glaser, Steffen J. ;
Jelezko, Fedor ;
Kuhr, Stefan ;
Lewenstein, Maciej ;
Riedel, Max F. ;
Schmidt, Piet O. ;
Thew, Rob ;
Wallraff, Andreas ;
Walmsley, Ian ;
Wilhelm, Frank K. .
NEW JOURNAL OF PHYSICS, 2018, 20
[4]   Energy dynamics, heat production and heat-work conversion with qubits: toward the development of quantum machines [J].
Arrachea, Liliana .
REPORTS ON PROGRESS IN PHYSICS, 2023, 86 (03)
[5]   Microscopic model of a phononic refrigerator [J].
Arrachea, Liliana ;
Mucciolo, Eduardo R. ;
Chamon, Claudio ;
Capaz, Rodrigo B. .
PHYSICAL REVIEW B, 2012, 86 (12)
[6]   Learning the best nanoscale heat engines through evolving network topology [J].
Ashida, Yuto ;
Sagawa, Takahiro .
COMMUNICATIONS PHYSICS, 2021, 4 (01)
[7]   Characteristic functions of quantum heat with baths at different temperatures [J].
Aurell, Erik .
PHYSICAL REVIEW E, 2018, 97 (06)
[8]  
Ba J, 2014, ACS SYM SER
[9]  
Benenti G., 2019, Principles of quantum computation and information: a comprehensive textbook
[10]   Fundamental aspects of steady-state conversion of heat to work at the nanoscale [J].
Benenti, Giuliano ;
Casati, Giulio ;
Saito, Keiji ;
Whitney, Robert S. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2017, 694 :1-124