Geometric Studies and the Bohr Radius for Certain Normalized Harmonic Mappings

被引:0
作者
Mandal, Rajib [1 ]
Biswas, Raju [1 ]
Guin, Sudip Kumar [1 ]
机构
[1] Raiganj Univ, Dept Math, Raiganj 733134, West Bengal, India
关键词
Analytic; Univalent; Harmonic functions; Starlike; Convex; Close-to-convex functions; Coefficient estimate; Growth theorem; Bohr radius; THEOREM;
D O I
10.1007/s40840-024-01732-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be the class of harmonic functions f = h + (g) over bar in the unit disk D := {z is an element of C : vertical bar z vertical bar < 1}, where h and g are analytic in D. In 2020, N. Ghosh and V. Allu introduced the class P-H(0) ( M) of normalized harmonic mappings defined by P-H(0)(M) = {f = h + (g) over bar is an element of H : Re(zh '' (z)) > - M + vertical bar zg '' (z)vertical bar with M > 0, g ' (0) = 0, z is an element of D}. In this paper, we investigate various geometric properties such as starlikeness, convexity, convex combination and convolution for functions in the class P-H(0)(M). Furthermore, we determine the sharp Bohr-Rogosinski radius, improved Bohr radius and refined Bohr radius for the class P-H(0)(M).
引用
收藏
页数:37
相关论文
共 25 条
[1]   Bohr radius for subordinating families of analytic functions and bounded harmonic mappings [J].
Abu Muhanna, Y. ;
Ali, Rosihan M. ;
Ng, Zhen Chuan ;
Hasni, Siti Farah M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) :124-136
[2]   Bohr's phenomenon in subordination and bounded harmonic classes [J].
Abu Muhanna, Yusuf .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (11) :1071-1078
[3]   Improved Bohr inequalities for certain class of harmonic univalent functions [J].
Ahamed, Molla Basir ;
Allu, Vasudevarao ;
Halder, Himadri .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (02) :267-290
[4]   Generalization of results about the Bohr radius for power series [J].
Aizenberg, Lev .
STUDIA MATHEMATICA, 2007, 180 (02) :161-168
[5]   A note on Bohr's phenomenon for power series [J].
Ali, Rosihan M. ;
Barnard, Roger W. ;
Solynin, Alexander Yu. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) :154-167
[6]   The Bohr inequality for certain harmonic mappings [J].
Allu, Vasudevarao ;
Halder, Himadri .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (03) :581-597
[7]   Bohr phenomenon for certain subclasses of harmonic mappings [J].
Allu, Vasudevarao ;
Halder, Himadri .
BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 173
[8]  
Avci Y., 1990, ANN U M CURIESKLOD A, V44, P1
[9]   Bohr's power series theorem in several variables [J].
Boas, HP ;
Khavinson, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (10) :2975-2979
[10]  
Bohr H, 1914, P LOND MATH SOC, V13, P1