Galaxy stellar and total mass estimation using machine learning

被引:4
作者
Chu, Jiani [1 ]
Tang, Hongming [1 ]
Xu, Dandan [1 ]
Lu, Shengdong [2 ]
Long, Richard [1 ,3 ]
机构
[1] Tsinghua Univ, Dept Astron, Beijing 100084, Peoples R China
[2] Univ Durham, Inst Computat Cosmol, Dept Phys, South Rd, Durham DH1 3LE, England
[3] Univ Manchester, Jodrell Bank Ctr Astrophys, Dept Phys & Astron, Oxford Rd, Manchester M13 9PL, England
基金
中国博士后科学基金;
关键词
methods: data analysis; galaxies: kinematics and dynamics; TO-LIGHT RATIO; SDSS-IV MANGA; INTEGRAL-FIELD SPECTROSCOPY; STAR-FORMING GALAXIES; DARK-MATTER HALOES; ILLUSTRISTNG SIMULATIONS; HYDRODYNAMICAL SIMULATIONS; FUNDAMENTAL PLANE; ELLIPTIC GALAXIES; RADIAL VARIATIONS;
D O I
10.1093/mnras/stae406
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Conventional galaxy mass estimation methods suffer from model assumptions and degeneracies. Machine learning (ML), which reduces the reliance on such assumptions, can be used to determine how well present-day observations can yield predictions for the distributions of stellar and dark matter. In this work, we use a general sample of galaxies from the TNG100 simulation to investigate the ability of multibranch convolutional neural network (CNN) based ML methods to predict the central (i.e. within 1-2 effective radii) stellar and total masses, and the stellar mass-to-light ratio (M-*/L). These models take galaxy images and spatially resolved mean velocity and velocity dispersion maps as inputs. Such CNN-based models can, in general, break the degeneracy between baryonic and dark matter in the sense that the model can make reliable predictions on the individual contributions of each component. For example, with r-band images and two galaxy kinematic maps as inputs, our model predicting M-*/L has a prediction uncertainty of 0.04 dex. Moreover, to investigate which (global) features significantly contribute to the correct predictions of the properties above, we utilize a gradient-boosting machine. We find that galaxy luminosity dominates the prediction of all masses in the central regions, with stellar velocity dispersion coming next. We also investigate the main contributing features when predicting stellar and dark matter mass fractions (f(*), f(DM)) and the dark matter mass M-DM, and discuss the underlying astrophysics.
引用
收藏
页码:6354 / 6369
页数:16
相关论文
共 105 条
  • [11] Deriving star cluster parameters with convolutional neural networks: II. Extinction and cluster-background classification
    Bialopetravicius, J.
    Narbutis, D.
    [J]. ASTRONOMY & ASTROPHYSICS, 2020, 633
  • [12] Binney J., 2008, Galactic Dynamics: Second Edition, VSecond
  • [13] Star formation rates and stellar masses from machine learning
    Bonjean, V.
    Aghanim, N.
    Salome, P.
    Beelen, A.
    Douspis, M.
    Soubrie, E.
    [J]. ASTRONOMY & ASTROPHYSICS, 2019, 622
  • [14] OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY
    Bundy, Kevin
    Bershady, Matthew A.
    Law, David R.
    Yan, Renbin
    Drory, Niv
    MacDonald, Nicholas
    Wake, David A.
    Cherinka, Brian
    Sanchez-Gallego, Jose R.
    Weijmans, Anne-Marie
    Thomas, Daniel
    Tremonti, Christy
    Masters, Karen
    Coccato, Lodovico
    Diamond-Stanic, Aleksandar M.
    Aragon-Salamanca, Alfonso
    Avila-Reese, Vladimir
    Badenes, Carles
    Falcon-Barroso, Jesus
    Belfiore, Francesco
    Bizyaev, Dmitry
    Blanc, Guillermo A.
    Bland-Hawthorn, Joss
    Blanton, Michael R.
    Brownstein, Joel R.
    Byler, Nell
    Cappellari, Michele
    Conroy, Charlie
    Dutton, Aaron A.
    Emsellem, Eric
    Etherington, James
    Frinchaboy, Peter M.
    Fu, Hai
    Gunn, James E.
    Harding, Paul
    Johnston, Evelyn J.
    Kauffmann, Guinevere
    Kinemuchi, Karen
    Klaene, Mark A.
    Knapen, Johan H.
    Leauthaud, Alexie
    Li, Cheng
    Lin, Lihwai
    Maiolino, Roberto
    Malanushenko, Viktor
    Malanushenko, Elena
    Mao, Shude
    Maraston, Claudia
    McDermid, Richard M.
    Merrifield, Michael R.
    [J]. ASTROPHYSICAL JOURNAL, 2015, 798 (01)
  • [15] The SAURON project -: IV.: The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies
    Cappellari, M
    Bacon, R
    Bureau, M
    Damen, MC
    Davies, RL
    de Zeeuw, PT
    Emsellem, E
    Falcón-Barroso, J
    Krajnovic, D
    Kuntschner, H
    McDermid, RM
    Peletier, RF
    Sarzi, M
    van den Bosch, RCE
    van de Ven, G
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 366 (04) : 1126 - 1150
  • [16] Measuring the inclination and mass-to-light ratio of axisymmetric galaxies via anisotropic Jeans models of stellar kinematics
    Cappellari, Michele
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 390 (01) : 71 - 86
  • [17] Efficient solution of the anisotropic spherically aligned axisymmetric Jeans equations of stellar hydrodynamics for galactic dynamics
    Cappellari, Michele
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 494 (04) : 4819 - 4837
  • [18] The ATLAS3D project - I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria
    Cappellari, Michele
    Emsellem, Eric
    Krajnovic, Davor
    McDermid, Richard M.
    Scott, Nicholas
    Kleijn, G. A. Verdoes
    Young, Lisa M.
    Alatalo, Katherine
    Bacon, R.
    Blitz, Leo
    Bois, Maxime
    Bournaud, Frederic
    Bureau, M.
    Davies, Roger L.
    Davis, Timothy A.
    de Zeeuw, P. T.
    Duc, Pierre-Alain
    Khochfar, Sadegh
    Kuntschner, Harald
    Lablanche, Pierre-Yves
    Morganti, Raffaella
    Naab, Thorsten
    Oosterloo, Tom
    Sarzi, Marc
    Serra, Paolo
    Weijmans, Anne-Marie
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 413 (02) : 813 - 836
  • [19] MAHGIC: a Model Adapter for the Halo-Galaxy Inter-Connection
    Chen, Yangyao
    Mo, H. J.
    Li, Cheng
    Wang, Kai
    Wang, Huiyuan
    Yang, Xiaohu
    Zhang, Youcai
    Katz, Neal
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 507 (02) : 2510 - 2530
  • [20] Classification of Fermi-LAT unidentified gamma-ray sources using catboost gradient boosting decision trees
    Coronado-Blazquez, Javier
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 515 (02) : 1807 - 1814