Application of untargeted liquid chromatography-mass spectrometry to routine analysis of food using three-dimensional bucketing and machine learning

被引:4
作者
Hansen, Jule [1 ]
Kunert, Christof [2 ]
Muenstermann, Hella [1 ]
Raezke, Kurt-Peter [2 ]
Seifert, Stephan [1 ]
机构
[1] Univ Hamburg, Hamburg Sch Food Sci, Inst Food Chem, Grindelallee 117, D-20146 Hamburg, Germany
[2] Eurofins Food Integr Control Serv GmbH, Berliner Str 2, Ritterhude, Germany
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Mass spectrometry; Food profiling; Honey; Routine analysis; Machine learning; DISCRIMINATION; ALIGNMENT;
D O I
10.1038/s41598-024-67459-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For the detection of food adulteration, sensitive and reproducible analytical methods are required. Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) is a highly sensitive method that can be used to obtain analytical fingerprints consisting of a variety of different components. Since the comparability of measurements carried out with different devices and at different times is not given, specific adulterants are usually detected in targeted analyses instead of analyzing the entire fingerprint. However, this comprehensive analysis is desirable in order to stay ahead in the race against food fraudsters, who are constantly adapting their adulterations to the latest state of the art in analytics. We have developed and optimized an approach that enables the separate processing of untargeted LC-HRMS data obtained from different devices and at different times. We demonstrate this by the successful determination of the geographical origin of honey samples using a random forest model. We then show that this approach can be applied to develop a continuously learning classification model and our final model, based on data from 835 samples, achieves a classification accuracy of 94% for 126 test samples from 6 different countries.
引用
收藏
页数:10
相关论文
共 45 条
[1]  
[Anonymous], 2012, Ensemble Machine Learning
[2]   Correction of mass calibration gaps in liquid chromatography-mass spectrometry metabolomics data [J].
Benton, H. Paul ;
Want, Elizabeth J. ;
Ebbels, Timothy M. D. .
BIOINFORMATICS, 2010, 26 (19) :2488-2489
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies [J].
Broadhurst, David ;
Goodacre, Royston ;
Reinke, Stacey N. ;
Kuligowski, Julia ;
Wilson, Ian D. ;
Lewis, Matthew R. ;
Dunn, Warwick B. .
METABOLOMICS, 2018, 14 (06)
[5]   A cross-platform toolkit for mass spectrometry and proteomics [J].
Chambers, Matthew C. ;
Maclean, Brendan ;
Burke, Robert ;
Amodei, Dario ;
Ruderman, Daniel L. ;
Neumann, Steffen ;
Gatto, Laurent ;
Fischer, Bernd ;
Pratt, Brian ;
Egertson, Jarrett ;
Hoff, Katherine ;
Kessner, Darren ;
Tasman, Natalie ;
Shulman, Nicholas ;
Frewen, Barbara ;
Baker, Tahmina A. ;
Brusniak, Mi-Youn ;
Paulse, Christopher ;
Creasy, David ;
Flashner, Lisa ;
Kani, Kian ;
Moulding, Chris ;
Seymour, Sean L. ;
Nuwaysir, Lydia M. ;
Lefebvre, Brent ;
Kuhlmann, Frank ;
Roark, Joe ;
Rainer, Paape ;
Detlev, Suckau ;
Hemenway, Tina ;
Huhmer, Andreas ;
Langridge, James ;
Connolly, Brian ;
Chadick, Trey ;
Holly, Krisztina ;
Eckels, Josh ;
Deutsch, Eric W. ;
Moritz, Robert L. ;
Katz, Jonathan E. ;
Agus, David B. ;
MacCoss, Michael ;
Tabb, David L. ;
Mallick, Parag .
NATURE BIOTECHNOLOGY, 2012, 30 (10) :918-920
[6]   Food Authentication: Small-Molecule Profiling as a Tool for the Geographic Discrimination of German White Asparagus [J].
Creydt, Marina ;
Hudzik, Daria ;
Rurik, Marc ;
Kohlbacher, Oliver ;
Fischer, Markus .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (50) :13328-13339
[7]   Metabolomic investigation of the response of the model plant Arabidopsis thaliana to cadmium exposure:: Evaluation of data pretreatment methods for further statistical analyses [J].
Ducruix, Celine ;
Vailhen, Dorninique ;
Werner, Erwan ;
Fievet, Julie B. ;
Bourguignon, Jacques ;
Tabet, Jean-Claude ;
Ezan, Eric ;
Junot, Christophe .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2008, 91 (01) :67-77
[8]   Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry [J].
Dunn, Warwick B. ;
Broadhurst, David ;
Begley, Paul ;
Zelena, Eva ;
Francis-McIntyre, Sue ;
Anderson, Nadine ;
Brown, Marie ;
Knowles, Joshau D. ;
Halsall, Antony ;
Haselden, John N. ;
Nicholls, Andrew W. ;
Wilson, Ian D. ;
Kell, Douglas B. ;
Goodacre, Royston .
NATURE PROTOCOLS, 2011, 6 (07) :1060-1083
[9]   Improved detection of honey adulteration by measuring differences between 13C/12C stable carbon isotope ratios of protein and sugar compounds with a combination of elemental analyzer - isotope ratio mass spectrometry and liquid chromatography - isotope ratio mass spectrometry (δ13C-EA/LC-IRMS) [J].
Elflein, Lutz ;
Raezke, Kurt-Peter .
APIDOLOGIE, 2008, 39 (05) :574-587
[10]  
Eurofins scientific, 2021, Honey authenticity testing by LC-Orbitrap-HRMS